Twitter interaction between audiences and influencers. Sentiment, polarity, and communicative behaviour analysis methodology
DOI:
https://doi.org/10.3145/epi.2022.nov.18Palabras clave:
Twitter, Audiences, Influencers, Sentiment analysis, Parasocial interaction, Polarity, Emotions, Communication, Social networks, Social media, Hashtags, Theoretical advance, MethodologyResumen
Twitter is one of several social networks with the highest numbers of users in Spain. In spite of this, how are communicative relationships developed in the digital environment among influencers who have emerged on the Internet? These personalities have a stronger influence on children and young people than traditional celebrities. The aim of this work is to study the communicative interaction generated on the profiles of Spanish influencers with the most followers on Twitter, based on the number of content items generated and the responses they receive from users. The polarity and sentiment conveyed by these communications have also been analysed. By processing publications in real time using machine learning based on sentiment analysis, 48,878 tweets and retweets from five influencers were studied over a period of 40 days. The results show that the publications reached nearly 200 million followers, and despite being fourth in terms of the number of followers, @IbaiLlanos is the influencer who leads the conversations on Twitter with the highest number of tweets, retweets, and audience share. Among the most popular topics, sporting events stand out. This study has also confirmed that the most frequently stated emotion is surprise, and that positive messages prevail over those that are negative and neutral with regard to polarity. Nevertheless, the linear regression data has verified that the main trend is toward publishing negative messages, with a lower statistical correlation, which is a behaviour that might possibly be duplicated on other social networks.
Descargas
Citas
Ahmad, Munir; Aftab, Shahib (2017). "Analyzing the performance of SVM for polarity detection with different datasets". International journal of modern education & computer science, v. 9, n. 10, pp. 29-36. https://doi.org/10.5815/ijmecs.2017.10.04
Ali, Mubashir; Baqir, Amees; Psaila, Giuseppe; Malik, Sayyam (2020). "Towards the discovery of influencers to follow in micro-blogs (Twitter) by detecting topics in posted messages (tweets)". Applied sciences, v. 10, n.16, 5715. https://doi.org/10.3390/app10165715
Alp, Zeynep-Zengin; í–ÄŸí¼dí¼cí¼, Åžule-Gí¼ndí¼z (2018). "Identifying topical influencers on Twitter based on user behavior and network topology". Knowledge based systems, v. 141, pp. 211-221. https://doi.org/10.1016/j.knosys.2017.11.021
Anderson, Monica; Jiang, Jinging (2018). "Teens, social media & technology 2018". Pew Research Center, v. 31, pp. 1673-1689. https://pewrsr.ch/3clGcWZ
Arce-García, Sergio; Orviz-Martínez, Natalia; Cuervo-Carabel, Tatiana (2020). "Impact of emotions expressed by digital newspapers on Twitter". Profesional de la información, v. 29, n. 5, e290520. https://doi.org/10.3145/epi.2020.sep.20
Ariza-Martín, Pablo (2021). "Ibai colapsa Twitch con un millón y medio de espectadores en directo para ver su velada de boxeo". El correo, 27 mayo. https://bit.ly/3ffMCWa
Autocontrol (2020). Código de conducta sobre el uso de influencers en la publicidad. https://bit.ly/3owWSP6
Bae, Youngge; Lee, Hongchul (2012). "Sentiment analysis of Twitter audiences: Measuring the positive or negative influence of popular twitterers". Journal of the American Society for Information Science and Technology, v. 63, n. 12, pp. 2521-2535. https://doi.org/10.1002/asi.22768
Berger, Jonah; Milkman, Katherine (2012). "What makes online content viral?". American Marketing Association, v. 49, n. 2, pp. 192-205. https://doi.org/10.1509/jmr.10.0353
Berne-Manero, Carmen; Marzo-Navarro, Mercedes (2020). "Exploring how influencer and relationship marketing serve corporate sustainability". Sustainability, v. 12, n. 11, 4392. https://doi.org/10.3390/su12114392
Bharti, Santosh-Kumar; Naidu, Reddy; Babu, Korra-Santhya (2017). "Hyperbolic feature-based sarcasm detection in tweets: a machine learning approach". In: 2017 14th IEEE India Council international conference (Indicon). https://doi.org/10.1109/INDICON.2017.8487712
Bond, Bradley (2016). "Following your "˜friend´: Social media and the strength of adolescents´ parasocial relationships with media personae". Cyberpsychology, behavior, and social networking, v. 19, n. 11, pp. 656-660. https://doi.org/10.1089/cyber.2016.0355
Bossen, Christina-Bucknell; Kottasz, Rita (2020). "Uses and gratifications sought by pre-adolescent and adolescent TikTok consumers". Young consumers, v. 21, n. 4, pp. 1747-3616. https://doi.org/10.1108/YC-07-2020-1186
Campbell, Colin; Farrell, Justine-Rapp (2020). "More than meets the eye: the functional components underlying influencer marketing". Business horizons, v. 63, n. 4, pp. 469-479. https://doi.org/10.1016/j.bushor.2020.03.003
Cardoso, Alejandra; Talame, Lorena; Amor, Matías; Neil, Carlos (2019). "Minería de opiniones: análisis de sentimientos en una red social". En: XXI Workshop de investigadores en ciencias de la computación. http://sedici.unlp.edu.ar/handle/10915/77379
Casaló, Luis; Flavián, Carlos; Ibáñez-Sánchez, Sergio (2020). "Influencers on Instagram: Antecedents and consequences of opinion leadership". Journal of business research, v. 117, pp. 510-519. https://doi.org/10.1016/j.jbusres.2018.07.005
Chang, Wei-Lun (2019). "The impact of emotion: A blended model to estimate influence on social media". Information systems frontiers, v. 21, n. 5, pp. 1137-1151. https://doi.org/10.1007/s10796-018-9824-0
Cho, Jin-Hee (2018). "Dynamics of uncertain and conflicting opinions in social networks". IEEE transactions on computational social systems, v. 5, n. 2, pp. 518-531. https://doi.org/10.1109/TCSS.2018.2826532
Court, Eduardo; Rengifo, Erick-Williams (2011). Estadísticas y econometría financiera. Buenos Aires: Cengage Learning. ISBN: 978 98 714864 8 9
Dibble, Jayson; Hartmann, Tilo; Rosaen, Sarah (2016). "Parasocial interaction and parasocial relationship: conceptual clarification and a critical assessment of measures". Human communication research, v. 42, n. 1, pp. 21-44. https://doi.org/10.1111/hcre.12063
Drescher, Christian; Wallner, Guenter; Kriglstein, Simone; Sifa, Rafet; Drachen, Anders; Pohl, Margit (2018). "What moves players? Visual data exploration of Twitter and gameplay data". In: Proceedings of the 2018 CHI conference on human factors in computing systems. https://doi.org/10.1145/3173574.3174134
Dridi, Amna; Recupero, Diego-Reforgiato (2019). "Leveraging semantics for sentiment polarity detection in social media". International journal of machine learning and cybernetics, v. 10, n. 8, pp. 2045-2055. https://doi.org/10.1007/s13042-017-0727-z
Edelmann, Noella (2017). "Lurking in online participation and e-participation". In: 2017 Fourth international conference on eDemocracy & eGovernment (Icedeg), pp. 282-284. http://doi.org/10.1109/ICEDEG.2017.7962552
Fernández-Muñoz, Cristóbal; García-Guardia, María-Luisa (2016). "Las principales celebrities en Twitter: análisis de su comunicación e influencia en la red social". Comunicaí§í£o, mídia e consumo, v. 13, n. 38, pp. 116-129. https://doi.org/10.18568/cmc.v13i38.1285
Fernández-Prados, Juan; Lozano-Díaz, Antonia; Cuenca-Piqueras, Cristina; González-Moreno, María-José (2021). "Analysis of teenage cyberactivists on Twitter and Instagram around the world". In: 2021 9th International conference on information and education technology (Iciet), pp. 476-479. https://ieeexplore.ieee.org/abstract/document/9419619
Garcia, Klaifer; Berton, Lilian (2021). "Topic detection and sentiment analysis in Twitter content related to COVID-19 from Brazil and the USA". Applied soft computing, v. 101, 107057. https://doi.org/10.1016/j.asoc.2020.107057
Gopi, Arepalli-Peda; Jyothi, Naga-Sravana; Narayana, Laksman; Sandeep, Satya (2020). "Classification of tweets data based on polarity using improved RBF kernel of SVM". International journal of information technology. https://doi.org/10.1007/s41870-019-00409-4
Grí¤ve, Jan-Frederik (2017). "Exploring the perception of influencers vs. traditional celebrities: are social media stars a new type of endorser?". In: Proceedings of the 8th international conference on social media & society. https://doi.org/10.1145/3097286.3097322
Hasan, Ali; Moin, Sana; Karim, Ahmad; Shamshirband, Shahaboddin (2018). "Machine learning-based sentiment analysis for Twitter accounts". Mathematical and computational applications, v. 23, n. 1, 11. https://doi.org/10.3390/mca23010011
Hernández-Ruiz, Alejandra; Gutiérrez, Yoan (2021). "Analysing the Twitter accounts of licensed sports gambling operators in Spain: a space for responsible gambling?". Communication & society, v. 34, n. 4, pp. 65-79. https://doi.org/10.15581/003.34.4.65-79
Horton, Donald; Wohl, Richard (1956). "Mass communication and para-social interaction". Psychiatry. Journal for the study of interpersonal processes, v. 19, n. 3, pp. 215-229.
Hwang, Kumju; Zhang, Qi (2018). "Influence of parasocial relationship between digital celebrities and their followers on followers´ purchase and electronic word-of-mouth intentions, and persuasion knowledge". Computers in human behavior, v. 87, pp. 155-173. https://doi.org/10.1016/j.chb.2018.05.029
IAB Spain (2022). Estudio de redes sociales 2022. https://iabspain.es/estudio/estudio-de-redes-sociales-2022
Interactivadigital.com (2021). "La velada del año, de Ibai Llanos, hace historia". Interactiva, 28 mayo. https://bit.ly/3wuhmKa
Ishtiaq, Munazza (2015). "Sentiment analysis of Twitter data using sentiment influencers". Journal of intelligent computing, v. 6, n. 1, pp. 17-24. https://bit.ly/3AfNSQu
Jain, Somya; Sinha, Adwitiya (2020). "Identification of influential users on Twitter: A novel weighted correlated influence measure for Covid-19". Chaos, solitons & fractals, v. 139, 110037. https://doi.org/10.1016/j.chaos.2020.110037
Jiménez-Castillo, David; Sánchez-Fernández, Raquel (2019). "The role of digital influencers in brand recommendation: examining their impact on engagement, expected value and purchase intention". International journal of information management, v. 49, pp. 366-376. https://doi.org/10.1016/j.ijinfomgt.2019.07.009
Judd, Charles; McClelland, Gary; Ryan, Carey (2017). Data analysis: a model comparison approach to regression, anova, and beyond. London: Routledge. ISBN: 978 1 3 157441 3 1 https://doi.org/10.4324/9781315744131
Khajeheian, Datis; Kolli, Shaghayegh (2020). "Digital games get viral on social media: a social network analysis of Pokémon Go on Twitter". International journal of web based communities, v. 16, n. 3, pp. 262-278. https://doi.org/10.1504/IJWBC.2020.108632
Ki, Chung-Wha; Kim, Youn-Kyung (2019). "The mechanism by which social media influencers persuade consumers: the role of consumers´ desire to mimic". Psychology & marketing, v. 36, n. 10, pp. 905-922. https://doi.org/10.1002/mar.21244
Kim, Jihyun; Kim, Jinyoung; Collins, Chad (2021). "First impressions in 280 characters or less: sharing life on Twitter and the mediating role of social presence". Telematics and informatics, v. 61, 101596. https://doi.org/10.1016/j.tele.2021.101596
Kim, Jihyun; Song, Hayeon (2016). "Celebrity´s self-disclosure on Twitter and parasocial relationships: a mediating role of social presence". Computers in human behavior, v. 62, pp. 570-577. https://doi.org/10.1016/j.chb.2016.03.083
Kowalczyk, Christine; Pounders, Kathrynn (2016). "Transforming celebrities through social media: the role of authenticity and emotional attachment". Journal of product & brand management, v. 24, n. 4, pp. 345-356. https://doi.org/10.1108/JPBM-09-2015-0969
Krause, Amanda; North, Adrian; Heritage, Brody (2018). "Musician interaction via social networking sites: celebrity attitudes, attachment, and their correlates". Music & science, v. 1. https://doi.org/10.1177/2059204318762923
Kreissl, Julian; Possler, Daniel; Klimmt, Christoph (2021). "Engagement with the gurus of gaming culture: parasocial relationships to let´s players". Games and culture, v. 16, n. 8, pp. 1021-1043. https://doi.org/10.1177/15554120211005241
Lahuerta-Otero, Eva; Cordero-Gutiérrez, Rebeca (2016). "Looking for the perfect tweet. The use of data mining techniques to find influencers on Twitter". Computers in human behavior, v. 64, pp. 575-583. https://doi.org/10.1016/j.chb.2016.07.035
Liu, Bing (2017). "Many facets of sentiment analysis". In: Cambria, Erik; Das, Dipankar; Bandyopadhyay, Sivaji; Feraco, Antonio. A practical guide to sentiment analysis. Cham, Switzerland: Springer, pp. 11-40. ISBN: 978 3 319 55394 8
Loria, Enrica; Pirker, Johanna; Drachen, Aanders; Marconi, Annapaola (2020). "Do influencers influence? - Analyzing players´ activity in an online multiplayer game". In: 2020 IEEE conference on games (CoG), pp. 120-127. https://bit.ly/3BhFKAy
Lou, Chen; Kim, Hye-Kyung (2019). "Fancying the new rich and famous? Explicating the roles of influencer content, credibility, and parental mediation in adolescents´ parasocial relationship, materialism, and purchase intentions". Frontiers in psychology, v. 10, 2567. https://doi.org/10.3389/fpsyg.2019.02567
Lowe-Calverley, Emily; Grieve, Rachel (2021). Do the metrics matter? An experimental investigation of Instagram influencer effects on mood and body dissatisfaction. Body image, v. 36. https://doi.org/10.1016/j.bodyim.2020.10.003
Mueller, Juergen; Stumme, Gerd (2017). "Predicting rising follower counts on Twitter using profile information". In: Proceedings of the 2017 ACM on web science conference, pp. 121-130. https://doi.org/10.1145/3091478.3091490
Nemes, Lázsló; Kiss, Attila (2021). "Social media sentiment analysis based on COVID-19". Journal of information and telecommunication, v. 5, n. 1. https://doi.org/10.1080/24751839.2020.1790793
Nesi, Jacqueline; Choukas-Bradley, Sophia; Prinstein, Mitchell (2018). "Transformation of adolescent peer relations in the social media context: Part 1 - A theoretical framework and application to dyadic peer relationships". Clinical child and family psychology review, v. 21, n. 3, pp. 267-294. https://doi.org/10.1007/s10567-018-0261-x
Riquelme, Fabián; González-Cantergiani, Pablo (2016). "Measuring user influence on Twitter: a survey". Information processing & management, v. 52, n. 5, pp. 949-975. https://doi.org/10.1016/j.ipm.2016.04.003
Sailunaz, Kasfha; Alhajj, Reda (2019). "Emotion and sentiment analysis from Twitter text". Journal of computational science, v. 36, 101003. https://doi.org/10.1016/j.jocs.2019.05.009
Sánchez-Rada, Juan-Fernando; Iglesias, Carlos-Ángel (2019). "Social context in sentiment analysis: formal definition, overview of current trends and framework for comparison". Information fusion, v. 52, pp. 344-356. https://doi.org/10.1016/j.inffus.2019.05.003
Santamaría-de-la-Piedra, Elena; Meana-Peón, Rufino (2017). "Redes sociales y fenómeno influencer. Reflexiones desde una perspectiva psicológica". Miscelánea Comillas. Revista de ciencias humanas y sociales, v. 75, n. 147, pp. 443-469. https://revistas.comillas.edu/index.php/miscelaneacomillas/article/view/8433
Scolari, Carlos A. (2008). Hipermediaciones: elementos para una teoría de la comunicación digital interactiva. Barcelona: Editorial Gedisa. ISBN: 978 84 9784 410 9
Social Media Family (2021). VII Estudio sobre los usuarios de Facebook, Twitter, Instagram y LinkedIn en España. https://bit.ly/2Wpbfco
Stever, Gayle; Lawson, Kevin (2013). "Twitter as a way for celebrities to communicate with fans: implications for the study of parasocial interaction". North American journal of psychology, v. 15, n. 2, pp. 339-355. https://bit.ly/3BfDqKi
Suárez-Álvarez, Rebeca; García-Jiménez, Antonio (2021). "Centennials en TikTok: tipología de vídeos. Análisis y comparativa España-Gran Bretaña por género, edad y nacionalidad". Revista latina de comunicación social, v. 79. https://www.doi.org/10.4185/RLCS-2021-1503
Tauhid, Syafi-Muhammad; Ruldeviyani, Yova (2020). "Sentiment analysis of Indonesians response to influencer in social media". In: 2020 7th International conference on information technology, computer, and electrical engineering (Icitacee), pp. 90-95. https://doi.org/10.1109/ICITACEE50144.2020.9239218
Vizcaíno-Verdú, Arantxa; Aguaded, Ignacio (2020). "Análisis de sentimiento en Instagram: polaridad y subjetividad de cuentas infantiles". ZER: revista de estudios de comunicación, v. 25, n. 48, pp. 213-229. https://doi.org/10.1387/zer.21454
Wallner, Gí¼nter; Kriglstein, Simone; Drachen, Anders (2019). "Tweeting your destiny: profiling users in the Twitter landscape around an online game". In: 2019 IEEE conference on games (CoG). https://doi.org/10.1109/CIG.2019.8848079
Yuste, Bárbara (2015). "Las nuevas formas de consumir información de los jóvenes". Revista de estudios de juventud, n. 108, pp. 179-191. http://goo.gl/eqg9UF
Zarei, Koosha; Ibosiola, Damilola; Farahbakhsh, Reza; Gilani, Zafar; Garimella, Kiran; Crespi, Ní¶el; Tyson, Gareth (2020). "Characterising and detecting sponsored influencer posts on Instagram". In: 2020 IEEE/ACM international conference on advances in social networks analysis and mining (Asonam), pp. 327-331. https://doi.org/10.1109/ASONAM49781.2020.9381309
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2022 Profesional de la información
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Condiciones de difusión de los artículos una vez son publicados
Los autores pueden publicitar libremente sus artículos en webs, redes sociales y repositorios
Deberán respetarse sin embargo, las siguientes condiciones:
- Solo deberá hacerse pública la versión editorial. Rogamos que no se publiquen preprints, postprints o pruebas de imprenta.
- Junto con esa copia ha de incluirse una mención específica de la publicación en la que ha aparecido el texto, añadiendo además un enlace clicable a la URL: http://revista.profesionaldelainformacion.com
La revista Profesional de la información ofrece los artículos en acceso abierto con una licencia Creative Commons BY.