Impacto de las emociones vertidas por diarios digitales en Twitter
DOI:
https://doi.org/10.3145/epi.2020.sep.20Palabras clave:
Prensa digital, Diarios, Periodismo digital, Machine learning, Redes sociales, Medios sociales, Twitter, Emociones, Sentimientos, Polaridad, Pluralismo informativo, Discursos, Reacciones, Opinión públicaResumen
El uso de Twitter por parte de los diarios de información está muy extendido y es una forma de tener a sus lectores informados casi en tiempo real. En este artículo analizamos el discurso de los mensajes vertidos por los diez principales diarios de información general en España y las reacciones que provocan en la red social. El objetivo de esta investigación es analizar si es el discurso emocional de las noticias de cada diario el que provoca mayor difusión y atención por parte de los usuarios, así como conocer las emociones y sentimientos vertidos temporalmente en los mismos. Para ello se hizo un seguimiento entre octubre y noviembre de 2019 de noticias que incluyen acontecimientos importantes como sentencias, altercados o la celebración de elecciones generales. Mediante el empleo de técnicas de machine learning se analizaron con la aplicación de algoritmos 124.897 tweets, lo que permitió determinar las emociones y valencias, así como desarrollar estudios estadísticos y gráficos de dependencia entre variables emocionales y de valencia sentimental positiva o negativa. Los resultados evidencian que en general, no se emplean excesivos discursos emocionales que busquen impactar. Sin embargo, sí que se aprecian diferencias de uso emocional y de sentimientos entre los diarios que pretenden la fidelización del lector. Por contra se encuentra que la reacción de los usuarios está más ligada al hecho informativo en sí y a las emociones que les provocan, que al tipo de discurso emocional y/o polarizado. El día a día informativo determina en gran medida qué se consume por parte de los usuarios de la red social, en la que se aprecian discursos cambiantes en función de la línea editorial de cada diario.
Descargas
Citas
Araujo, Theo; Neijens, Peter; Vliegenthart, Rens (2015). "What motivates consumers to re-tweet brand content?". Journal of advertising research, v. 55, n. 3, pp. 284-295. https://doi.org/10.2501/jar-2015-009
Arcila-Calderón, Carlos; Ortega-Mohedano, Félix; Jiménez-Amores, Javier; Trullenque, Sofía (2017). "Análisis supervisado de sentimientos políticos en español: clasificación en tiempo real de tweets basada en aprendizaje automático". El profesional de la información, v. 26, n. 5, pp. 973-982. https://doi.org/10.3145/epi.2017.sep.18
Auxier, Brooke E.; Vitak, Jessica (2019). "Factors motivating customization and echo chamber creation within digital news environments". Social media + society, v. 5, n. 2. https://doi.org/10.1177/2056305119847506
Baviera, Tomás (2018). "Influence in the political Twitter sphere: Authority and retransmission in the 2015 and 2016 Spanish general elections". European journal of communication, v. 33, n. 3, pp. 321-337. https://doi.org/10.1177/0267323118763910
Berger, Jonah; Milkman, Katherine L. (2012). "What makes online content viral?". Journal of marketing research, v. 49, n. 2, pp. 192-205. https://doi.org/10.1509/jmr.10.0353
Bravo-Márquez, Felipe; Mendoza, Marcelo; Poblete, Barbara (2014). "Meta-level sentiment models for big social data analysis". Knowledge-based systems, n. 69, pp. 86-99. https://doi.org/10.1016/j.knosys.2014.05.016
Caldevilla-Domínguez, David; Rodríguez-Terceño, José; Barrientos-Báez, Almudena (2019). "El malestar social a través de las nuevas tecnologías: Twitter como herramienta política". Revista latina de comunicación social, n. 74, pp. 1264-1290. http://www.revistalatinacs.org/074paper/1383/66es.html
Chang, Wei-Lun (2019). "The impact of emotion: A blended model to estimate influence on social media". Information systems frontiers, v. 21, pp. 1137-1151. https://doi.org/10.1007/s10796-018-9824-0
Chowdhury, S. M. Mazharul; Ghosh, Priyanka; Abujar, Sheikh; Afrin, Arina; Akhter-Hossain, Syed (2018). "Sentiment analysis of tweet data: The study of sentimental state of human from tweet text". In: Abraham, Ajith; Dutta, Paramartha; Kumar-Mandal, Jyotsna; Bhattacharya, Abhishek; Dutta, Suomi. Emerging technologies in data mining and information security. Springer Nature Singapore, pp. 3-14. ISBN: 978 981 13 1497 1 https://doi.org/10.1007/978-981-13-1498-8_1
CIS (2019). "Encuesta 3263. Pregunta 0005c: Periódico preferido para seguir la información política y electoral". Macrobarómetro de octubre 2019. Preelectoral elecciones generales 2019, 1 octubre. Centro de Investigaciones Sociológicas. http://www.analisis.cis.es/cisdb.jsp
De-Vicente-Domínguez, Aída-María (2016). "Periodismo y redes sociales: piezas informativas producidas con Twitter". En: Larrondo-Ureta, Ainara; Meso-Ayerdi, Koldobika; Peña-Fernández, Simón (eds.). 8º Congreso internacional de ciberperiodismo. El impacto de las audiencias en los perfiles profesionales y los contenidos. ISBN: 978 84 9082 468 9 https://web-argitalpena.adm.ehu.es/listaproductos.asp?IdProducts=USPDF164689
Denecke, Kerstin (2008). "Using SentiWordNet for multilingual sentiment analysis". In: 2008 IEEE 24th International conference on data engineering workshop. https://doi.org/10.1109/ICDEW.2008.4498370
Díaz-Rangel, Ismael; Sidorov, Grigori; Suárez-Guerra, Sergio (2014). "Creación y evaluación de un diccionario marcado con emociones y ponderado para el español". Onomázein, n. 29, pp. 31-46. https://doi.org/10.7764/onomazein.29.5
Doval-Avendaño, Montserrat (2017). "La creación de comunidad en Twitter alrededor de un medio inexistente, El español". Estudios sobre el mensaje periodístico, v. 23, n. 1, pp. 391-408. https://doi.org/10.5209/ESMP.55603
Duffy, Andrew; Ling, Rich (2020). "The gift of news: Phatic news sharing on social media for social cohesion". Journalism studies, v. 21, n. 1, pp. 72-87. https://doi.org/10.1080/1461670x.2019.1627900
Ekman, Paul (1992). "An argument for basic emotions". Cognition and emotion, v. 6, n. 3, pp. 169-200. http://www.paulekman.com/wp-content/uploads/2013/07/An-Argument-For-Basic-Emotions.pdf
Elespanol.com (2019). "Revolución en Comscore: El español abre brecha como líder nativo digital y ya es un 80% de "˜El mundo´". El español, 19 septiembre. https://cutt.ly/qgUwQxO
Elfenbein, Hillary-Anger; Ambady, Nalini (2003). "Universals and cultural differences in recognozing emotions". Current directions in psychological science, v. 12, n. 5, pp. 159-164. https://doi.org/10.1111/1467-8721.01252
Fenoll, Vicente; Cárcamo-Ulloa, Luis; Sáez-Trumper, Diego (2018). "El uso de Twitter de los medios de comunicación españoles en período electoral". Estudios sobre el mensaje periodístico, v. 24, n. 2, pp. 1223-1238. https://doi.org/10.5209/ESMP.62211
Fernández-Vallejo, Ana-María (2018). "Comunicar emociones en el discurso metapolítico de Twitter: el caso de #MADURO versus @NICOLASMADURO". Observatorio (OBS*) Journal, v. 12, n. 3, pp. 175-194. https://doi.org/10.15847/obsOBS12320181214
Gil de Zúñiga, Homero; Diehl, Trevor (2017). "Citizenship, social media, and big data: Current and future research in the social sciences". Social science computer review, v. 35, n. 1, pp. 3-9. https://doi.org/10.1177/0894439315619589
Gligorić, Kristina; Anderson, Ashton; West, Robert (2019). "Causal effects of brevity on style and success in social media". In: Proceedings of the ACM on human-computer interaction, pp. 1-23. https://doi.org/10.1145/3359147
González-Fernandes, Sarita (2016). "Redes sociais: perdas e ganhos nas rotinas produtivas dos webjornalistas em meio à pressí£o do tempo". En: Larrondo-Ureta, Ainara; Meso-Ayerdi, Koldobika; Peña-Fernández, Simón (eds.). 8º Congreso internacional de ciberperiodismo. El impacto de las audiencias en los perfiles profesionales y los contenidos. ISBN: 978 84 9082 468 9 https://web-argitalpena.adm.ehu.es/listaproductos.asp?IdProducts=USPDF164689
Gupta, Raj-Kumar; Yang, Yinping (2019). "Predicting and understanding news social popularity with emotional salience features". In: Proceedings of the 27th ACM International conference on multimedia - MM´19. https://doi.org/10.1145/3343031.3351048
Karlsen, Rune (2015). "Followers are opinion leaders: The role of people in the flow of political communication on and beyond social networking sites". European journal of communication, v. 30, n. 3, pp. 301-318. https://doi.org/10.1177/0267323115577305
Kaylor, Brian (2019). "Likes, retweets, and polarization". Review & expositor, v. 116, n. 2, pp. 183-192. https://doi.org/10.1177/0034637319851508
Keib, Kate; Himelboim, Itai; Han, Jeong-Yeob (2018). "Important tweets matter: Predicting retweets in the #BlackLivesMatter talk on Twitter". Computers in human behavior, v. 85, pp. 106-115. https://doi.org/10.1016/j.chb.2018.03.025
Kim, Hyun-Suk (2015). "Attracting views and going viral: How message features and news-sharing channels affect health news diffusion". Journal of communication, v. 65, n. 3, pp. 512-534. https://doi.org/10.1111/jcom.12160
Klinger, Ulrike; Svensson, Jakob (2015). "The emergence of network media logic in political communication: A theoretical approach". New media & society, v. 17, n. 8, pp. 1241-1257. https://doi.org/10.1177/1461444814522952
Lee-Burton, Jennifer; Mueller, Kristen M.; Gollins, Jan; Walls, Danielle M. (2019). "The impact of airing Super Bowl television ads early on social media". Journal of advertising research, v. 59, n. 4, pp. 391-401. https://doi.org/10.2501/jar-2019-016
Levi, Simona (2019). #FakeYou, fake news y desinformación. Barcelona: Rayo Verde Ed. ISBN: 978 84 17925 06 2
Liang, Yuhua; Kee, Kerk F. (2018). "Developing and validating the A-B-C framework of information diffusion on social media". New media & society, v. 20, n. 1, pp. 272-292. https://doi.org/10.1177/1461444816661552
Martínez-Cámara, Eugenio; Martín-Valdivia, María-Teresa; Ureña-López, Luis-Alfonso; Montejo-Ráez, Arturo (2012). "Sentiment analysis in Twitter". Natural language engineering, v. 20, n. 1, pp. 1-28. https://doi.org/10.1017/s1351324912000332
Meng, Jingbo; Peng, Wei; Tan, Pang-Ning; Liu, Wuyu; Cheng, Ying; Bae, Arram (2018). "Diffusion size and structural virality: The effects of message and network features on spreading health information on Twitter". Computers in human behavior, v. 89, pp. 111-120. https://doi.org/10.1016/j.chb.2018.07.039
Mohammad, Saif M.; Turney, Peter D. (2012). "Crowdsourcing a word-emotion association lexicon". Computational intelligence, v. 29, n. 3, pp. 436-465. https://doi.org/10.1111/j.1467-8640.2012.00460.x
Molina-González, María-Dolores; Martínez-Cámara, Eugenio; Martín-Valdivia, María-Teresa (2015). "CRiSOL: Base de conocimiento de opiniones para El español". Procesamiento del lenguaje natural, n. 55, pp. 143-150. http://journal.sepln.org/sepln/ojs/ojs/index.php/pln/article/view/5226
Nofer, Michael; Hinz, Oliver (2015). "Using Twitter to predict the stock market". Business & information systems engineering, v. 57, n. 4, pp. 229-242. https://doi.org/10.1007/s12599-015-0390-4
Padilla-Herrada, María-Soledad (2016). "Marcadores y partículas discursivas interactivas en el entorno político/periodístico de Twitter". Philologia hispalensis, v. 30, n. 1, pp. 193-212. https://doi.org/10.12795/PH.2016.i30.10
Pariser, Eli (2011). The filter bubble. Londres: Penguin Books. ISBN: 978 0 241954522
Plutchik, Robert (1980). "A general psychoevolutionary theory of emotion". Emotion: Theory, research, and experience, v. 1, pp. 3-33. Academic Press. ISBN: 978 0 12 558701 3 https://doi.org/10.1016/B978-0-12-558701-3.50007-7
Sauter, Disa A.; Eisner, Frank; Ekman, Paul; Scott, Sophie K. (2010). "Cross-cultural recognition of basic emotions through nonverbal emotional vocalizations". Proceedings of the National Academy of Sciences of the United States of America, v. 107, n. 6, pp. 2408-2412. https://doi.org/10.1073/pnas.0908239106
Schober, Michael F.; Pasek, Josh; Guggenheim, Lauren; Lampe, Cliff; Conrad, Frederick G. (2016). "Social media analyses for social measurement". Public opinion quarterly, v. 80, v. 1, pp. 180-211. https://doi.org/10.1093/poq/nfv048
Segado-Boj, Francisco; Díaz-Campo, Jesús; Navarro-Sierra, Nuria (2020). "Emociones y difusión de noticias sobre el cambio climático en redes sociales. Influencia de hábitos, actitudes previas y usos y gratificaciones en universitarios". Revista latina de comunicación social, v. 75, pp. 245-269. https://doi.org/10.4185/RLCS-2020-1425
Segado-Boj, Francisco; Díaz-Campo, Jesús; Quevedo-Redondo, Raquel (2019). "Influence of the "˜News finds me´ perception on news sharing and news consumption on social media". Communication today, v. 10, n. 2, pp. 90-104. https://www.communicationtoday.sk/wp-content/uploads/07.-SEGADO-BOJ-et-al.-%E2%80%93-CT-2-2019.pdf
Soria-Ibáñez, María-del-Mar (2015). "El uso de Twitter para analizar el activismo ciudadano: las noticias económicas de los principales periódicos de referencia nacional". Estudios sobre el mensaje periodístico, v. 21, n. 1, pp. 103-121. https://doi.org/10.5209/rev_ESMP.2015.v21.n1.49113
Spohr, Dominic (2017). "Fake news and ideological polarization. Filter bubbles and selective exposure on social media". Business information review, v. 34, n. 3, pp. 150-160. https://doi.org/10.1177/0266382117722446
Stieglitz, Stefan; Dang-Xuan, Linh (2013). "Emotions and information diffusion in social media - Sentiment of microblogs and sharing behavior". Journal of management information systems, v. 29, n. 4, pp. 217-248. https://doi.org/10.2753/MIS0742-1222290408
Swati, Ubale; Pranali, Chilekar; Pragati, Sonkamble (2015). "Sentiment analysis of news articles using machine learning approach". International journal of advances in electronics and computer science, v. 2, n. 4, pp. 114-116. http://www.iraj.in/journal/journal_file/journal_pdf/12-127-1430132488114-116.pdf
Taboada, Maite; Brooke, Julian; Tofiloski, Milan; Voll, Kimberli; Stede, Manfred (2011). "Lexicon-based methods for sentiment analysis". Computational linguistics, v. 37, n. 2, pp. 267-307. https://doi.org/10.1162/coli_a_00049
Weeks, Brian E.; Holbert, R. Lance (2013). "Predicting dissemination of news content in social media: A focus on reception, friending, and partisanship". Journalism & mass communication quarterly, v. 90, n. 2, pp. 212-232. https://doi.org/10.1177/1077699013482906
Yarnoz, Carlos (2019). "Tendencias y/o periodismo". El país, Defensor del lector, 15 septiembre. https://elpais.com/elpais/2019/09/13/opinion/1568407417_139410.html
Zhu, Xun; Kim, Youllee; Park, Haseon (2019). "Do messages spread widely also diffuse fast? Examining the effects of message characteristics on information diffusion". Computers in human behavior, v. 103, pp. 37-47. https://doi.org/10.1016/j.chb.2019.09.006
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Condiciones de difusión de los artículos una vez son publicados
Los autores pueden publicitar libremente sus artículos en webs, redes sociales y repositorios
Deberán respetarse sin embargo, las siguientes condiciones:
- Solo deberá hacerse pública la versión editorial. Rogamos que no se publiquen preprints, postprints o pruebas de imprenta.
- Junto con esa copia ha de incluirse una mención específica de la publicación en la que ha aparecido el texto, añadiendo además un enlace clicable a la URL: http://revista.profesionaldelainformacion.com
La revista Profesional de la información ofrece los artículos en acceso abierto con una licencia Creative Commons BY.