Impacto de las emociones vertidas por diarios digitales en Twitter

Autores/as

DOI:

https://doi.org/10.3145/epi.2020.sep.20

Palabras clave:

Prensa digital, Diarios, Periodismo digital, Machine learning, Redes sociales, Medios sociales, Twitter, Emociones, Sentimientos, Polaridad, Pluralismo informativo, Discursos, Reacciones, Opinión pública

Resumen

El uso de Twitter por parte de los diarios de información está muy extendido y es una forma de tener a sus lectores informados casi en tiempo real. En este artículo analizamos el discurso de los mensajes vertidos por los diez principales diarios de información general en España y las reacciones que provocan en la red social. El objetivo de esta investigación es analizar si es el discurso emocional de las noticias de cada diario el que provoca mayor difusión y atención por parte de los usuarios, así como conocer las emociones y sentimientos vertidos temporalmente en los mismos. Para ello se hizo un seguimiento entre octubre y noviembre de 2019 de noticias que incluyen acontecimientos importantes como sentencias, altercados o la celebración de elecciones generales. Mediante el empleo de técnicas de machine learning se analizaron con la aplicación de algoritmos 124.897 tweets, lo que permitió determinar las emociones y valencias, así como desarrollar estudios estadísticos y gráficos de dependencia entre variables emocionales y de valencia sentimental positiva o negativa. Los resultados evidencian que en general, no se emplean excesivos discursos emocionales que busquen impactar. Sin embargo, sí que se aprecian diferencias de uso emocional y de sentimientos entre los diarios que pretenden la fidelización del lector. Por contra se encuentra que la reacción de los usuarios está más ligada al hecho informativo en sí y a las emociones que les provocan, que al tipo de discurso emocional y/o polarizado. El día a día informativo determina en gran medida qué se consume por parte de los usuarios de la red social, en la que se aprecian discursos cambiantes en función de la línea editorial de cada diario.

Citas

Araujo, Theo; Neijens, Peter; Vliegenthart, Rens (2015). “What motivates consumers to re-tweet brand content?”. Journal of advertising research, v. 55, n. 3, pp. 284-295. https://doi.org/10.2501/jar-2015-009

Arcila-Calderón, Carlos; Ortega-Mohedano, Félix; Jiménez-Amores, Javier; Trullenque, Sofía (2017). “Análisis supervisado de sentimientos políticos en español: clasificación en tiempo real de tweets basada en aprendizaje automático”. El profesional de la información, v. 26, n. 5, pp. 973-982. https://doi.org/10.3145/epi.2017.sep.18

Auxier, Brooke E.; Vitak, Jessica (2019). “Factors motivating customization and echo chamber creation within digital news environments”. Social media + society, v. 5, n. 2. https://doi.org/10.1177/2056305119847506

Baviera, Tomás (2018). “Influence in the political Twitter sphere: Authority and retransmission in the 2015 and 2016 Spanish general elections”. European journal of communication, v. 33, n. 3, pp. 321-337. https://doi.org/10.1177/0267323118763910

Berger, Jonah; Milkman, Katherine L. (2012). “What makes online content viral?”. Journal of marketing research, v. 49, n. 2, pp. 192-205. https://doi.org/10.1509/jmr.10.0353

Bravo-Márquez, Felipe; Mendoza, Marcelo; Poblete, Barbara (2014). “Meta-level sentiment models for big social data analysis”. Knowledge-based systems, n. 69, pp. 86-99. https://doi.org/10.1016/j.knosys.2014.05.016

Caldevilla-Domínguez, David; Rodríguez-Terceño, José; Barrientos-Báez, Almudena (2019). “El malestar social a través de las nuevas tecnologías: Twitter como herramienta política”. Revista latina de comunicación social, n. 74, pp. 1264-1290. http://www.revistalatinacs.org/074paper/1383/66es.html

Chang, Wei-Lun (2019). “The impact of emotion: A blended model to estimate influence on social media”. Information systems frontiers, v. 21, pp. 1137-1151. https://doi.org/10.1007/s10796-018-9824-0

Chowdhury, S. M. Mazharul; Ghosh, Priyanka; Abujar, Sheikh; Afrin, Arina; Akhter-Hossain, Syed (2018). “Sentiment analysis of tweet data: The study of sentimental state of human from tweet text”. In: Abraham, Ajith; Dutta, Paramartha; Kumar-Mandal, Jyotsna; Bhattacharya, Abhishek; Dutta, Suomi. Emerging technologies in data mining and information security. Springer Nature Singapore, pp. 3-14. ISBN: 978 981 13 1497 1 https://doi.org/10.1007/978-981-13-1498-8_1

CIS (2019). “Encuesta 3263. Pregunta 0005c: Periódico preferido para seguir la información política y electoral”. Macrobarómetro de octubre 2019. Preelectoral elecciones generales 2019, 1 octubre. Centro de Investigaciones Sociológicas. http://www.analisis.cis.es/cisdb.jsp

De-Vicente-Domínguez, Aída-María (2016). “Periodismo y redes sociales: piezas informativas producidas con Twitter”. En: Larrondo-Ureta, Ainara; Meso-Ayerdi, Koldobika; Peña-Fernández, Simón (eds.). 8º Congreso internacional de ciberperiodismo. El impacto de las audiencias en los perfiles profesionales y los contenidos. ISBN: 978 84 9082 468 9 https://web-argitalpena.adm.ehu.es/listaproductos.asp?IdProducts=USPDF164689

Denecke, Kerstin (2008). “Using SentiWordNet for multilingual sentiment analysis”. In: 2008 IEEE 24th International conference on data engineering workshop. https://doi.org/10.1109/ICDEW.2008.4498370

Díaz-Rangel, Ismael; Sidorov, Grigori; Suárez-Guerra, Sergio (2014). “Creación y evaluación de un diccionario marcado con emociones y ponderado para el español”. Onomázein, n. 29, pp. 31-46. https://doi.org/10.7764/onomazein.29.5

Doval-Avendaño, Montserrat (2017). “La creación de comunidad en Twitter alrededor de un medio inexistente, El español”. Estudios sobre el mensaje periodístico, v. 23, n. 1, pp. 391-408. https://doi.org/10.5209/ESMP.55603

Duffy, Andrew; Ling, Rich (2020). “The gift of news: Phatic news sharing on social media for social cohesion”. Journalism studies, v. 21, n. 1, pp. 72-87. https://doi.org/10.1080/1461670x.2019.1627900

Ekman, Paul (1992). “An argument for basic emotions”. Cognition and emotion, v. 6, n. 3, pp. 169-200. http://www.paulekman.com/wp-content/uploads/2013/07/An-Argument-For-Basic-Emotions.pdf

Elespanol.com (2019). “Revolución en Comscore: El español abre brecha como líder nativo digital y ya es un 80% de ‘El mundo’”. El español, 19 septiembre. https://cutt.ly/qgUwQxO

Elfenbein, Hillary-Anger; Ambady, Nalini (2003). “Universals and cultural differences in recognozing emotions”. Current directions in psychological science, v. 12, n. 5, pp. 159-164. https://doi.org/10.1111/1467-8721.01252

Fenoll, Vicente; Cárcamo-Ulloa, Luis; Sáez-Trumper, Diego (2018). “El uso de Twitter de los medios de comunicación españoles en período electoral”. Estudios sobre el mensaje periodístico, v. 24, n. 2, pp. 1223-1238. https://doi.org/10.5209/ESMP.62211

Fernández-Vallejo, Ana-María (2018). “Comunicar emociones en el discurso metapolítico de Twitter: el caso de #MADURO versus @NICOLASMADURO”. Observatorio (OBS*) Journal, v. 12, n. 3, pp. 175-194. https://doi.org/10.15847/obsOBS12320181214

Gil de Zúñiga, Homero; Diehl, Trevor (2017). “Citizenship, social media, and big data: Current and future research in the social sciences”. Social science computer review, v. 35, n. 1, pp. 3-9. https://doi.org/10.1177/0894439315619589

Gligorić, Kristina; Anderson, Ashton; West, Robert (2019). “Causal effects of brevity on style and success in social media”. In: Proceedings of the ACM on human-computer interaction, pp. 1-23. https://doi.org/10.1145/3359147

González-Fernandes, Sarita (2016). “Redes sociais: perdas e ganhos nas rotinas produtivas dos webjornalistas em meio à pressão do tempo”. En: Larrondo-Ureta, Ainara; Meso-Ayerdi, Koldobika; Peña-Fernández, Simón (eds.). 8º Congreso internacional de ciberperiodismo. El impacto de las audiencias en los perfiles profesionales y los contenidos. ISBN: 978 84 9082 468 9 https://web-argitalpena.adm.ehu.es/listaproductos.asp?IdProducts=USPDF164689

Gupta, Raj-Kumar; Yang, Yinping (2019). “Predicting and understanding news social popularity with emotional salience features”. In: Proceedings of the 27th ACM International conference on multimedia - MM’19. https://doi.org/10.1145/3343031.3351048

Karlsen, Rune (2015). “Followers are opinion leaders: The role of people in the flow of political communication on and beyond social networking sites”. European journal of communication, v. 30, n. 3, pp. 301-318. https://doi.org/10.1177/0267323115577305

Kaylor, Brian (2019). “Likes, retweets, and polarization”. Review & expositor, v. 116, n. 2, pp. 183-192. https://doi.org/10.1177/0034637319851508

Keib, Kate; Himelboim, Itai; Han, Jeong-Yeob (2018). “Important tweets matter: Predicting retweets in the #BlackLivesMatter talk on Twitter”. Computers in human behavior, v. 85, pp. 106-115. https://doi.org/10.1016/j.chb.2018.03.025

Kim, Hyun-Suk (2015). “Attracting views and going viral: How message features and news-sharing channels affect health news diffusion”. Journal of communication, v. 65, n. 3, pp. 512-534. https://doi.org/10.1111/jcom.12160

Klinger, Ulrike; Svensson, Jakob (2015). “The emergence of network media logic in political communication: A theoretical approach”. New media & society, v. 17, n. 8, pp. 1241-1257. https://doi.org/10.1177/1461444814522952

Lee-Burton, Jennifer; Mueller, Kristen M.; Gollins, Jan; Walls, Danielle M. (2019). “The impact of airing Super Bowl television ads early on social media”. Journal of advertising research, v. 59, n. 4, pp. 391-401. https://doi.org/10.2501/jar-2019-016

Levi, Simona (2019). #FakeYou, fake news y desinformación. Barcelona: Rayo Verde Ed. ISBN: 978 84 17925 06 2

Liang, Yuhua; Kee, Kerk F. (2018). “Developing and validating the A-B-C framework of information diffusion on social media”. New media & society, v. 20, n. 1, pp. 272-292. https://doi.org/10.1177/1461444816661552

Martínez-Cámara, Eugenio; Martín-Valdivia, María-Teresa; Ureña-López, Luis-Alfonso; Montejo-Ráez, Arturo (2012). “Sentiment analysis in Twitter”. Natural language engineering, v. 20, n. 1, pp. 1-28. https://doi.org/10.1017/s1351324912000332

Meng, Jingbo; Peng, Wei; Tan, Pang-Ning; Liu, Wuyu; Cheng, Ying; Bae, Arram (2018). “Diffusion size and structural virality: The effects of message and network features on spreading health information on Twitter”. Computers in human behavior, v. 89, pp. 111-120. https://doi.org/10.1016/j.chb.2018.07.039

Mohammad, Saif M.; Turney, Peter D. (2012). “Crowdsourcing a word-emotion association lexicon”. Computational intelligence, v. 29, n. 3, pp. 436-465. https://doi.org/10.1111/j.1467-8640.2012.00460.x

Molina-González, María-Dolores; Martínez-Cámara, Eugenio; Martín-Valdivia, María-Teresa (2015). “CRiSOL: Base de conocimiento de opiniones para El español”. Procesamiento del lenguaje natural, n. 55, pp. 143-150. http://journal.sepln.org/sepln/ojs/ojs/index.php/pln/article/view/5226

Nofer, Michael; Hinz, Oliver (2015). “Using Twitter to predict the stock market”. Business & information systems engineering, v. 57, n. 4, pp. 229-242. https://doi.org/10.1007/s12599-015-0390-4

Padilla-Herrada, María-Soledad (2016). “Marcadores y partículas discursivas interactivas en el entorno político/periodístico de Twitter”. Philologia hispalensis, v. 30, n. 1, pp. 193-212. https://doi.org/10.12795/PH.2016.i30.10

Pariser, Eli (2011). The filter bubble. Londres: Penguin Books. ISBN: 978 0 241954522

Plutchik, Robert (1980). “A general psychoevolutionary theory of emotion”. Emotion: Theory, research, and experience, v. 1, pp. 3-33. Academic Press. ISBN: 978 0 12 558701 3 https://doi.org/10.1016/B978-0-12-558701-3.50007-7

Sauter, Disa A.; Eisner, Frank; Ekman, Paul; Scott, Sophie K. (2010). “Cross-cultural recognition of basic emotions through nonverbal emotional vocalizations”. Proceedings of the National Academy of Sciences of the United States of America, v. 107, n. 6, pp. 2408-2412. https://doi.org/10.1073/pnas.0908239106

Schober, Michael F.; Pasek, Josh; Guggenheim, Lauren; Lampe, Cliff; Conrad, Frederick G. (2016). “Social media analyses for social measurement”. Public opinion quarterly, v. 80, v. 1, pp. 180-211. https://doi.org/10.1093/poq/nfv048

Segado-Boj, Francisco; Díaz-Campo, Jesús; Navarro-Sierra, Nuria (2020). “Emociones y difusión de noticias sobre el cambio climático en redes sociales. Influencia de hábitos, actitudes previas y usos y gratificaciones en universitarios”. Revista latina de comunicación social, v. 75, pp. 245-269. https://doi.org/10.4185/RLCS-2020-1425

Segado-Boj, Francisco; Díaz-Campo, Jesús; Quevedo-Redondo, Raquel (2019). “Influence of the ‘News finds me’ perception on news sharing and news consumption on social media”. Communication today, v. 10, n. 2, pp. 90-104. https://www.communicationtoday.sk/wp-content/uploads/07.-SEGADO-BOJ-et-al.-%E2%80%93-CT-2-2019.pdf

Soria-Ibáñez, María-del-Mar (2015). “El uso de Twitter para analizar el activismo ciudadano: las noticias económicas de los principales periódicos de referencia nacional”. Estudios sobre el mensaje periodístico, v. 21, n. 1, pp. 103-121. https://doi.org/10.5209/rev_ESMP.2015.v21.n1.49113

Spohr, Dominic (2017). “Fake news and ideological polarization. Filter bubbles and selective exposure on social media”. Business information review, v. 34, n. 3, pp. 150-160. https://doi.org/10.1177/0266382117722446

Stieglitz, Stefan; Dang-Xuan, Linh (2013). “Emotions and information diffusion in social media - Sentiment of microblogs and sharing behavior”. Journal of management information systems, v. 29, n. 4, pp. 217-248. https://doi.org/10.2753/MIS0742-1222290408

Swati, Ubale; Pranali, Chilekar; Pragati, Sonkamble (2015). “Sentiment analysis of news articles using machine learning approach”. International journal of advances in electronics and computer science, v. 2, n. 4, pp. 114-116. http://www.iraj.in/journal/journal_file/journal_pdf/12-127-1430132488114-116.pdf

Taboada, Maite; Brooke, Julian; Tofiloski, Milan; Voll, Kimberli; Stede, Manfred (2011). “Lexicon-based methods for sentiment analysis”. Computational linguistics, v. 37, n. 2, pp. 267-307. https://doi.org/10.1162/coli_a_00049

Weeks, Brian E.; Holbert, R. Lance (2013). “Predicting dissemination of news content in social media: A focus on reception, friending, and partisanship”. Journalism & mass communication quarterly, v. 90, n. 2, pp. 212-232. https://doi.org/10.1177/1077699013482906

Yarnoz, Carlos (2019). “Tendencias y/o periodismo”. El país, Defensor del lector, 15 septiembre. https://elpais.com/elpais/2019/09/13/opinion/1568407417_139410.html

Zhu, Xun; Kim, Youllee; Park, Haseon (2019). “Do messages spread widely also diffuse fast? Examining the effects of message characteristics on information diffusion”. Computers in human behavior, v. 103, pp. 37-47. https://doi.org/10.1016/j.chb.2019.09.006

Publicado

2020-11-01

Cómo citar

Arce-García, S., Orviz-Martínez, N., & Cuervo-Carabel, T. (2020). Impacto de las emociones vertidas por diarios digitales en Twitter. Profesional De La Información, 29(5). https://doi.org/10.3145/epi.2020.sep.20

Número

Sección

Artículos de investigación / Research articles

Descargas

La descarga de datos todavía no está disponible.