Are there biases in decisions to tweet on scientific papers? A plea for conducting an experimental Twitter study. Technical note

Autores/as

  • Lutz Bornmann Max Planck Institute for Solid State Research
  • Robin Haunschild Max Planck Institute for Solid State Research https://orcid.org/0000-0001-7025-7256
  • Alexander Tekles Administrative Headquarters of the Max Planck Society

DOI:

https://doi.org/10.3145/epi.2022.ene.15

Palabras clave:

Altmetrics, Twitter, Experiments, Gender differences, Retweet preferences, Social media, Social networks, Scholarly communication

Resumen

Twitter data are used as alternative metrics (altmetrics) to measure the impact or attention of research. Tweets are used to communicate about papers. However, Twitter data can only be used for research evaluation purposes, if biases do not influence tweet decisions on papers. The existence of biases can only be reasonably investigated using an experimental design with controlled (marginal) manipulations. In this comment, we propose to undertake an experimental approach to study the decision of scientists to "˜tweet´ on a paper. We describe the design of a study that might allow the experimental investigation of tweet decisions including randomized variations and theoretically derived mechanisms for explaining the empirical results. The described study design should be adaptable to other social media platforms (e.g., Facebook or ResearchGate). This comment is intended to be a plea for using an experimental design to investigate biases in tweet decisions. It is an advantage of tweets -in contrast to citations- that an experimental approach can be applied to investigate the decision of scientists to communicate on papers.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Acock, Alan C. (2018). A gentle introduction to Stata (6th ed.). College Station, TX, USA: Stata Press. ISBN: 978 1 59718 269 0

Anderson, Melissa S. (2000). "Normative orientations of university faculty and doctoral students". Science and engineering ethics, v. 6, n. 4, pp. 443-461. https://doi.org/10.1007/s11948-000-0002-6

Austin, Peter C. (2011). "An introduction to propensity score methods for reducing the effects of confounding in observational studies". Multivariate behavioral research, v. 46, n. 3, pp. 399-424. https://doi.org/10.1080/00273171.2011.568786

Berger, Peter L.; Luckmann, Thomas (1966). The social construction of reality: A treatise in the sociology of knowledge. New York, NY, USA: Doubleday. http://perflensburg.se/Berger%20social-construction-of-reality.pdf

Bornmann, Lutz; Mutz, Rí¼diger; Daniel, Hans-Dieter (2011). "A reliability-generalization study of journal peer reviews: A multilevel meta-analysis of inter-rater reliability and its determinants". PLoS one, v. 5, n. 12, e14331. https://doi.org/10.1371/journal.pone.0014331

Cole, Jonathan R.; Singer, Burton (1991). "A theory of limited differences. Explaining the productivity puzzle in science". In: H. Zuckerman; J. R. Cole; J. T. Bruer (eds.). The outer circle. Women in the scientific community (pp. 277-310). London, UK: W. W. Norton & Company. ISBN: 978 0 393027730

Cole, Stephen (1992). Making science. Between nature and society. Cambridge, MA, USA: Harvard University Press. ISBN: 0 674 54347 5

Coleman, James S. (1990). Foundations of social theory. Cambridge, MA, USA: Belknap Press of Harvard University Press. ISBN: 0674312260

Colledge, Lisa (2014). Snowball metrics recipe book. Amsterdam: Snowball Metrics Program Partners. https://www.snowballmetrics.com/wp-content/uploads/0211-Snowball-Metrics-Recipe-Book-v7-LO.pdf

Dablander, Fabian (2020). An introduction to causal inference, 15 pp. https://psyarxiv.com/b3fkw

Didegah, Fereshteh; Thelwall, Mike (2013). "Determinants of research citation impact in nanoscience and nanotechno­logy". Journal of the American Society for Information Science and Technology, v. 64, n. 5, pp. 1055-1064. https://doi.org/10.1002/asi.22806

Falk, Armin; Heckman, James J. (2009). "Lab experiments are a major source of knowledge in the social sciences". Science, v. 326, n. 5952, pp. 535-538. https://doi.org/10.1126/science.1168244

Fortunato, Santo; Bergstrom, Carl T.; Bí¶rner, Katy; Evans, James A.; Helbing, Dirk; Milojević, StaÅ¡a; Petersen, Alexander M.; Radicchi, Filippo; Sinatra, Robert; Uzzi, Brian; Vespignani, Alessandro; Waltman, Ludo; Wang, Dashun; Barabási, Albert-László (2018). "Science of science". Science, v. 359, n. 6379, eaao018. https://doi.org/10.1126/science.aao0185

Knobloch-Westerwick, Silvia; Glynn, Carroll J. (2013). "The Matilda effect - Role congruity effects on scholarly communication: A citation analysis of Communication research and Journal of communication articles". Communication research, 40, v. n. 1, pp. 3-26. https://doi.org/10.1177/0093650211418339

Lance, Peter M.; Guilkey, David K.; Hattori, Aiko; Angeles, Gustavo (2014). How do we know if a program made a diffe­rence? A guide to statistical methods for program impact evaluation. Carolina: Measure Evaluation. ISBN: 978 0 692 23861 5 https://www.measureevaluation.org/resources/publications/ms-14-87-en/at_download/document

Larivière, Vincent; Gingras, Yves (2010). "The impact factor´s Matthew effect: A natural experiment in bibliometrics". Journal of the Association for Information Science and Technology, v. 61, n. 2, pp. 424-427. https://doi.org/10.1002/asi.21232

Luhmann, Niklas (1992). Die Wissenschaft der Gesellschaft. Frankfurt am Main, Germany: Suhrkamp. ISBN: 978 3 518286012

Lynn, Freda B.; Noonan, Mary C.; Sauder, Michael; Andersson, Matthew A. (2019). "A rare case of gender parity in Aca­demia". Social forces, v. 98, n. 2, pp. 518-547. https://doi.org/10.1093/sf/soy126

Mas-Bleda, Amalia; Thelwall, Mike (2016). "Can alternative indicators overcome language biases in citation counts? A comparison of Spanish and UK research". Scientometrics, v. 109, n. 3, pp. 2007-2030. https://doi.org/10.1007/s11192-016-2118-8

Merton, Robert K. (1942). "Science and technology in a democratic order". Journal of legal and political sociology, n. 1, pp. 115-126.

Merton, Robert K. (1973). The sociology of science: Theoretical and empirical investigations. Chicago, IL, USA: University of Chicago Press. ISBN: 0 226 52091 9 https://sciencepolicy.colorado.edu/students/envs_5110/merton_sociology_science.pdf

Muchnik, Lev; Aral, Sinan; Taylor, Sean J. (2013). "Social influence bias: A randomized experiment". Science, v. 341, n. 6146, pp. 647-651. https://doi.org/10.1126/science.1240466

Mulkay, Michael (1979). Science and the sociology of knowledge. London, UK: George Allen and Unwin. ISBN: 978 0 043010938

Parker, Philip D.; Van-Zanden, Brooke; Marsh, Herbert W.; Owen, Katherine; Duineveld, Jasper J.; Noetel, Michael (2020). "The intersection of gender, social class, and cultural context: A meta-analysis". Educational psychology review, v. 32, n. 1, pp. 197-228. https://doi.org/10.1007/s10648-019-09493-1

Salganik, Matthew J. (2017). Bit by bit: Social research in the digital age. Oxfordshire, UK: Princeton University Press. ISBN: 978 1 400888184

Salganik, Matthew J.; Dodds, Peter-Sheridan; Watts, Duncan J. (2006). "Experimental study of inequality and unpredictability in an artificial cultural market". Science, v. 311, n. 5762, pp. 854-856. https://doi.org/10.1126/science.1121066

Sheskin, David J. (2007). Handbook of parametric and nonparametric statistical procedures (4th ed.). Boca Raton, FL, USA: Chapman & Hall/CRC. ISBN: 978 0 429186196 https://doi.org/10.1201/9780429186196

Small, Henry (2020). "Past as prologue: Approaches to the study of confirmation in science". Quantitative science studies, v. 1, n. 3, pp. 1025-1040. https://doi.org/10.1162/qss_a_00063

Strumia, Alessandro (2021). "Gender issues in fundamental physics: A bibliometric analysis". Quantitative science stu­dies, v. 2, n. 1, pp. 225-253. https://doi.org/10.1162/qss_a_00114

Tahamtan, Iman; Bornmann, Lutz (2018). "Core elements in the process of citing publications: Conceptual overview of the literature". Journal of informetrics, v. 12, n. 1, pp. 203-216. https://doi.org/10.1016/j.joi.2018.01.002

Tahamtan, Iman; Bornmann, Lutz (2019). "What do citation counts measure? An updated review of studies on citations in scientific documents published between 2006 and 2018". Scientometrics, v. 121, n. 3, pp. 1635-1684. https://doi.org/10.1007/s11192-019-03243-4

Tennant, Jonathan P.; Dugan, Jonathan M.; Graziotin, Daniel; Jacques, Damien C.; Waldner, Francois; Mietchen, Daniel; Elkhatib, Yehia; Collister, Lauren; Pikas, Christina K.;... Colomb, Julian (2018). "A multi-disciplinary perspective on emergent and future innovations in peer review [version 3; peer review: approved]". F1000Research. https://f1000research.com/articles/6-1151

Van-de-Rijt, Arnout; Kang, Soong-Moon; Restivo, Michael; Patil, Akshay (2014). "Field experiments of success-breeds-success dynamics". Proceedings of the National Academy of Sciences of the United States of America, v. 111, n. 19, pp. 6934-6939. https://doi.org/10.1073/pnas.1316836111

Van-Noorden, Richard (2014). "Scientists and the social network". Nature, v. 512, n. 7513, pp. 126-129. https://doi.org/10.1038/512126a

Wyatt, Sally; Milojevic, StaÅ¡a; Park, Han-Woo; Leydesdorff, Loet (2016). "The intellectual and practical contributions of scientometrics to STS". In: U. Felt; R. Fouché; C. A. Miller; L. Smith-Doerr (eds.). Handbook of science and technology studies (pp. 87-112): The MIT Press. ISBN: 978 0 262035682 https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2588336

Ziman, John (1996). "´Postacademic science´: Constructing knowledge with networks and norms". Science studies, v. 9, n. 1, pp. 67-80.

Publicado

2022-02-25

Cómo citar

Bornmann, L., Haunschild, R., & Tekles, A. (2022). Are there biases in decisions to tweet on scientific papers? A plea for conducting an experimental Twitter study. Technical note. Profesional De La información, 31(1). https://doi.org/10.3145/epi.2022.ene.15