Green energy: identifying development trends in society using Twitter data mining to make strategic decisions

Autores/as

DOI:

https://doi.org/10.3145/epi.2022.ene.14

Palabras clave:

Green energy, Twitter, Social network analysis, Semantic analysis, Sentiment analysis, Big data, Business intelligence, Data analytics, Text analytics, Social analytics, Social networks, Social media, Environment, Renewable energy

Resumen

This study analyzes Twitter´s contribution to green energy. More than 200,000 global tweets sent during 2020 containing the terms "green energy" OR "greenenergy" were analyzed. The tweets were captured by web scraping and processed using algorithms and techniques for the analysis of massive datasets from social networks. In particular, relationships between users (through mentions) were determined according to the Louvain multilevel algorithm to identify communities and analyze global (density and centralization) and node-level (centrality) metrics. Subsequently, the content of the conversation was subject to semantic analysis (co-occurrence of the most relevant words), hashtag analysis (frequency analysis), and sentiment analysis (using the Vader model). The results reveal nine main communities and their leaders, as well as three main topics of conversation and the emotional state of the digital discussion. The main communities revolve around politics, socioeconomic issues, and environmental activism, while the conversations, which have developed mostly in positive terms, focus on green energy sources and storage, being aligned with the main communities identified, i.e., on political, socioeconomic, and climate change issues. Although most of the conversations have been about socioeconomic issues, the presence of leading company accounts was minor. The main aim of this work is to take the first steps toward an innovative competitive intelligence methodology to study and determine trends within different scientific fields or technologies in society that will enable strategic decisions to be made.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Adani (2020). "Adani green energy wins the world´s largest solar award". Newsroom of Adani Green Energy Limited (AGEL), Jun 9. https://www.adanigreenenergy.com/newsroom/media-releases

Adi, Ana (2018). "#Sustainability on Twitter: loose ties and green-washing CSR". In: Grigore, Georgiana; Stancu, Alin; McQueen, David (eds.). Corporate responsibility and digital communities. An international perspective towards sustainability. Palgrave studies in governance, leadership and responsibility. Palgrave Macmillan, pp. 99-122. ISBN: 978 3 319 63480 7 https://doi.org/10.1007/978-3-319-63480-7_6

Aguilar-Gallegos, Norman; Martí­nez-González, Enrique-Genaro; Aguilar-Ávila, Jorge (2017). Análisis de redes sociales: conceptos clave y cálculo de indicadores. Chapingo, México: Universidad Autónoma Chapingo (UACh). Centro de investigaciones económicas, sociales y tecnológicas de la agroindustria y la agricultura mundial (Ciestaam). ISBN: 978 607 12 0487 5 https://www.redinnovagro.in/pdfs/indicadores.pdf

Aguilar-Gallegos, Norman; Martí­nez-González, Enrique-Genaro; Aguilar-Ávila, Jorge; Santoyo-Cortés, Horacio; Muñoz-Rodrí­guez, Manrrubio; Garcí­a-Sánchez, Edgar-Iván (2016). "Social network analysis for catalysing agricultural innovation: from direct ties to integration and radiality". Estudios gerenciales, v. 32, n. 140, pp. 197-207. https://doi.org/10.1016/J.ESTGER.2016.06.006

Ahuja, Vandana; Shakeel, Moonis (2017). "Twitter presence of jet airways-deriving customer insights using netnography and wordclouds". Procedia computer science, v. 122, pp. 17-24. https://doi.org/10.1016/j.procs.2017.11.336

Bastian, Mathieu; Heymann, Sebastien; Jacomy, Mathieu (2009). "Gephi: an open source software for exploring and manipulating networks". In: International AAAI conference on weblogs and social media. https://gephi.org/publications/gephi-bastian-feb09.pdf

Blondel, Vincent D.; Guillaume, Jean-Loup; Lambiotte, Renaud; Lefebvre, Etienne (2008). "Fast unfolding of communities in large networks". Journal of statistical mechanics: theory and experiment, v. 8, n. 10, pp. 1-12. https://doi.org/10.1088/1742-5468/2008/10/P10008

Borgatti, Stephen P.; Everett, Martin G.; Johnson, Jeffrey C. (2013). Analyzing social networks. London: SAGE Publications Limited. ISBN: 978 1 52 64 0410 7

Campolo, Alex; Sanfilippo, Madelyn; Whittaker, Meredith; Crawford, Kate (2017). AI now 2017 report. https://ainowinstitute.org/AI_Now_2017_Report.pdf

Carvalho, Anabela (2009). "Communication for sustainable policy: connecting science, society and government". Science for environment policy. Environmental communication, n. 17. https://ec.europa.eu/environment/integration/research/newsalert/pdf/17si_en.pdf

Casero-Ripollés, Andreu (2018). "Research on political information and social media: Key points and challenges for the future". El profesional de la información, v. 27, n. 5, pp. 964-974. https://doi.org/10.3145/epi.2018.sep.01

Chamorro, Verónica; Rivera, Richard; Varela-Aldás, José; Castillo-Salazar, David; Borja-Galeas, Carlos; Guevara, César; Arias-Flores, Hugo; Fierro-Saltos, Washington; Hidalgo-Guijarro, Jairo; Yandún-Velasteguí­, Marco (2020). "Twitter mining for multiclass classification events of traffic and pollution". In: IHSED 2019. International conference on human systems engineering and design: Future trends and applications, pp. 1030-1036. https://doi.org/10.1007/978-3-030-27928-8_153

Chen, Wenhong; Tu, Fangjing; Zheng, Pei (2017). "A transnational networked public sphere of air pollution: analysis of a Twitter network of PM2.5 from the risk society perspective". Information, communication & society, v. 20, n. 7, pp. 1005-1023. https://doi.org/10.1080/1369118X.2017.1303076

Cody, Emily M.; Reagan, Andrew J.; Mitchell, Lewis; Dodds, Peter-Sheridan; Danforth, Christopher M. (2015). "Climate change sentiment on Twitter: an unsolicited public opinion poll". PloS one, v. 10, n. 8. https://doi.org/10.1371/journal.pone.0136092

Cossu, Jean-Valère; Dugué, Nicolas; Labatut, Vincent (2015). "Detecting real-world influence through Twitter". In: 2nd European network intelligence conference. https://doi.org/10.1109/ENIC.2015.20

Dahal, Biraj; Kumar, Sathish A. P.; Li, Zhenlong (2019). "Topic modeling and sentiment analysis of global climate change tweets". Social network analysis and mining, v. 9, art. 24. https://doi.org/10.1007/s13278-019-0568-8

De-Nooy, Wouter; Mrvar, Andrej; Batagelj, Vladimir (2018). Exploratory social network analysis with Pajek. Cambridge University Press. ISBN: 978 1 108 47414 6

Edizel, Bora; Bonchi, Francesco; Hajian, Sara; Panisson, André; Tassa, Tamir (2020). "FaiRecSys: mitigating algorithmic bias in recommender systems". International journal of data science and analytics, v. 9, pp. 197-213. https://doi.org/10.1007/S41060-019-00181-5

EPA (2019). What is green power?. United States environmental protection Agency. https://www.epa.gov/greenpower

European Parliament (2018). "Directive (EU) 2018/2001 of the European parliament and of the council on the promotion of the use of energy from renewable sources". Official journal of the European Union, n. L 328, 21/12/2018. https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32018L2001

Fernández-Arias, Pablo (2017). Análisis de los factores que influyeron en la evolución y desarrollo del reactor nuclear PWR. Tesis doctoral. Universidad de Salamanca.

Fernández-Arias, Pablo; Cuevas, Ana; Vergara, Diego (2021). "Controversia nuclear en España: la central de Lemóniz". Revista CTS, v. 16, n. 46, pp. 199-218. http://ojs.revistacts.net/index.php/CTS/article/view/218

Freeman, Linton C. (1978). "Centrality in social networks: conceptual clarification". Social networks, v. 1, n. 3, pp. 215-239. https://doi.org/10.1016/0378-8733(78)90021-7

Gibbs, Jeff; Moore, Michael (2019). Planet of the humans. https://www.youtube.com/watch?v=Zk11vI-7czE

González-Fernández-Villavicencio, Nieves (2014). "El #hashtag ya tiene historia". Anuario ThinkEPI, v. 8, pp. 326-330. https://thinkepi.profesionaldelainformacion.com/index.php/ThinkEPI/article/view/29601

Gupta, Kuhika; Ripberger, Joseph; Wehde, Wesley (2018). "Advocacy group messaging on social media: using the narrative policy framework to study Twitter messages about nuclear energy policy in the United States". Policy studies journal, v. 46, n. 1, pp. 119-136. https://doi.org/10.1111/psj.12176

Hanneman, Robert A. (2001). "Introducción a los métodos del análisis de redes sociales. Capí­tulo sexto: centralidad y poder". In: Introducción a los métodos del análisis de redes sociales. http://revista-redes.rediris.es/webredes/textos/cap6.pdf

Holmberg, Kim; Hellsten, Iina (2015). "Gender differences in the climate change communication on Twitter". Internet research, v. 25, n. 5, pp. 811-828. https://doi.org/10.1108/IntR-07-2014-0179

Hutto, Clayton J.; Gilbert, Eric (2014). "Vader: A parsimonious rule-based model for sentiment analysis of social media text". In: Proceedings of the 8th international AAAI conference on weblogs and social media, pp. 216-225. https://ojs.aaai.org/index.php/ICWSM/article/view/14550/14399

Jain, Achin; Jain, Vanita (2019). "Sentiment classification of Twitter data belonging to renewable energy using machine learning". Journal of information and optimization sciences, v. 40, n. 2, pp. 521-533. https://doi.org/10.1080/02522667.2019.1582873

Khan, M. Ali-ud-din; Uddin, Muhammad-Fahim; Gupta, Navarun (2014). "Seven V´s of big data understanding big data to extract value". In: Proceedings of the 2014 zone 1 conference of the American Society for Engineering Education, pp.1-5. https://doi.org/10.1109/ASEEZone1.2014.6820689

Khatua, Aparup; Cambria, Erik; Ho, Shirley S.; Na, Jin-Cheon (2020). "Deciphering public opinion of nuclear energy on Twitter". In: 2020 International joint conference on neural networks (IJCNN). https://doi.org/10.1109/IJCNN48605.2020.9206903

Kim, Jiyoun; Brossard, Dominique; Scheufele, Dietram A.; Xenos, Michael (2016). "Shared" information in the age of big data: exploring sentiment expression related to nuclear energy on Twitter". Journalism and mass communication quarterly, v. 93, n. 2, pp. 430-445. https://doi.org/10.1177/1077699016640715

Kim, Serena Y.; Ganesan, Koushik; Dickens, Princess; Panda, Soumya (2020). "Public sentiment toward solar energy: opinion mining of Twitter using a transformer-based language model". Sustainability, v. 13, n. 5, 2673. https://doi.org/10.3390/su13052673

Kramer, Adam D. I.; Guillory, Jamie E.; Hancock, Jeffrey T. (2014). "Experimental evidence of massive-scale emotional contagion through social networks". In: Proceedings of the National Academy of Sciences of the United States of America, v. 111, n. 24, pp. 8788-8790. https://doi.org/10.1073/pnas.1320040111

Labonte, Dane; Rowlands, Ian H. (2021). "Tweets and transitions: exploring Twitter-based political discourse regarding energy and electricity in Ontario, Canada". Energy research and social science, v. 72, p. 101870. https://doi.org/10.1016/j.erss.2020.101870

Laney, Doug (2001). 3D data management: controlling data volume, velocity, and variety. META Group Inc. https://www.academia.edu/37216189/Application_Delivery_Strategies

Larrondo-Ureta, Ainara; Morales-i-Gras, Jordi; Orbegozo-Terradillos, Julen (2019). "Feminist hashtag activism in Spain: Measuring the degree of politicisation of online discourse on #yosí­tecreo, #hermanayosí­tecreo, #cuéntalo y #noestássola". Communication & society, v. 32, n. 4, pp. 207-221. https://doi.org/10.15581/003.32.4.207-221

Li, Qiudan; Jin, Zhipeng; Wang, Can; Zeng, Daniel-Dajun (2016). "Mining opinion summarizations using convolutional neural networks in Chinese microblogging systems". Knowledge-based systems, v. 107, pp. 289-300. https://doi.org/10.1016/j.knosys.2016.06.017

Li, Ruopu; Crowe, Jessica; Leifer, David; Zou, Lei; Schoof, Justin (2019). "Beyond big data: social media challenges and opportunities for understanding social perception of energy". Energy research and social science, v. 56, p. 101217. https://doi.org/10.1016/j.erss.2019.101217

Ljubljana University (2021). Orange data mining. https://orangedatamining.com

Macmillan, Gordon (2015). "8 reasons why Twitter is the home of TV conversation". Twitter blog, 29 September. https://blog.twitter.com/en_gb/a/en-gb/2015/8-reasons-why-twitter-is-the-home-of-tv-conversation.html

Margolin, Drew; Liao, Wang (2018). "The emotional antecedents of solidarity in social media crowds". New media & society, v. 20, n. 10, pp. 3700-3719. https://doi.org/10.1177/1461444818758702

Microsoft (2021). About power query in Excel - Excel. https://support.microsoft.com/en-us/office/about-power-query-in-excel-7104fbee-9e62-4cb9-a02e-5bfb1a6c536a

Mooney, Peter; Winstanley, Adam; Corcoran, Padraig (2009). "Evaluating Twitter for use in environmental awareness campaigns". Proceedings of the China-Ireland information and communications technologies conference (CIICT 2009). Maynooth: Department of Computer science, NUI Maynooth ER, pp. 83-86. https://core.ac.uk/download/pdf/297012769.pdf

Morales-i-Gras, Jordi (2017). Soberaní­as enredadas: una perspectiva reticular, constructural y agéntica hacia los relatos soberanistas vasco y catalán contemporáneos en Twitter. Tesis doctoral. Universidad del Paí­s Vasco / Euskal Herriko Unibertsitatea. https://addi.ehu.es/handle/10810/22686

Morales-i-Gras, Jordi (2020). Datos masivos y minerí­a de datos sociales: conceptos y herramientas básicas. https://jordimorales.com/es/recursos

Mrvar, Andrej; Batagelj, Vladimir (2021). Programs for analysis and visualization of very large networks. Reference manual. http://mrvar.fdv.uni-lj.si/pajek/pajekman.pdf

Newman, Mark E. J.; Girvan, Michelle (2004). "Finding and evaluating community structure in networks". Physical review E, v. 69, n. 2, 026113. https://doi.org/10.1103/PhysRevE.69.026113

Oguntimilehin, Abiodun; Ademola, Emmanuel-Ojo (2014). "A review of big data management, benefits and challenges". Journal of emerging trends in computing and information sciences, v. 5, n. 6, pp. 433-438. https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.677.8629&rep=rep1&type=pdf

OpenRefine (2021). A free, open source, powerful tool for working with messy data. https://openrefine.org

Orbegozo-Terradillos, Julen; Larrondo-Ureta, Ainara; Morales-i-Gras, Jordi (2020). "Influencia del género en los debates electorales en España: análisis de la audiencia social en #ElDebateDecisivo y #L6Neldebate". El profesional de la información, v. 29, n. 2. https://doi.org/10.3145/epi.2020.mar.09

Orbegozo-Terradillos, Julen; Morales-i-Gras, Jordi; Larrondo-Ureta, Ainara (2019). "Feminismos indignados ante la justicia: la conversación digital en el caso de La Manada". IC revista cientí­fica de información y comunicación, n. 16, pp. 211-247.

Patgiri, Ripon; Ahmed, Arif (2016). "Big data : The V´s of the game changer paradigm". In: 2016 IEEE 18th international conference on high performance computing and communications; IEEE 14th international conference on smart city; IEEE 2nd international conference on data science and systems (HPCC/SmartCity/DSS), pp. 17-24. https://doi.org/10.1109/HPCC-SmartCity-DSS.2016.0014

PilaÅ™, Ladislav; KvasniÄková-Stanislavská, Lucie; Pitrová, Jana; KrejÄí­, Igor; Tichá, Ivana; Chalupová, Martina (2019). "Twitter analysis of global communication in the field of sustainability". Sustainability, v. 11, n. 24, 6958. https://doi.org/10.3390/su11246958

Prabhakar, Kaila-Rajesh (2019). "Climate change and Twitter. An empirical analysis of environmental awareness and engagement". Disaster advances, v. 12, n. 9, pp. 10-15.

Reboredo, Juan C.; Ugolini, Andrea (2018). "The impact of Twitter sentiment on renewable energy stocks". Energy economics, v. 76, pp. 153-169. https://doi.org/10.1016/j.eneco.2018.10.014

Reyes-Menéndez, Ana; Saura, José-Ramón; Álvarez-Alonso, César (2018). "Understanding #worldenvironmentday user opinions in Twitter: a topic-based sentiment analysis approach". International journal of environmental research and public health, v. 15, n. 11. https://doi.org/10.3390/ijerph15112537

Ruiz-Soler, Javier (2017). "Twitter research for social scientists: a brief introduction to the benefits, limitations and tools for analysing Twitter data". Dí­gitos, v. 1, n. 3, pp. 17-32. https://revistadigitos.com/index.php/digitos/article/view/87

Shen, Chien-Wen; Luong, Thai-Ha; Pham, Tuan (2021). "Exploration of social media opinions on innovation for sustainable development goals by topic modeling and sentiment analysis". In: Research and innovation forum 2020. RiiForum 2020, pp. 459-471. https://doi.org/10.1007/978-3-030-62066-0_35

Soussan, Tariq; Trovati, Marcello (2020). "Twitter analysis for business intelligence". In: Barolli Leonard; Nishino, Hsing-Chung; Miwa, Hiroyoshi. Advances in intelligent networking and collaborative systems. INCoS 2019. Advances in intelligent systems and computing, v. 1035, pp. 473-480. ISBN: 978 3 030 29035 1 https://doi.org/10.1007/978-3-030-29035-1_46

Unesco (2021). Invertir en ciencia, tecnologí­a e innovación. https://es.unesco.org/themes/invertir-ciencia-tecnologia-e-innovacion

Velázquez-Álvarez, O. Alejandro; Aguilar-Gallegos, Norman (2005). Manual introductorio al análisis de redes sociales (medidas de centralidad). http://revista-redes.rediris.es/webredes/talleres/Manual_ARS.pdf

Veltri, Giuseppe A. (2012). "Microblogging and nanotweets: nanotechnology on Twitter". Public understanding of science, v. 22, n. 7, pp. 832-849. https://doi.org/10.1177/0963662512463510

Veltri, Giuseppe A.; Atanasova, Dimitrinka (2017). "Climate change on Twitter: Content, media ecology and information sharing behavior". Public understanding of science, v. 26, n. 6, pp. 721-737. https://doi.org/10.1177/0963662515613702

WordArt (2021). Word cloud art creator. https://wordart.com

YouTube (2020). Donald Trump vs Joe Biden: Full presidential debate | US Election 2020. https://www.youtube.com/watch?v=GBLCSdxd6lk

Zeifer, Bárbara (2020). "El hashtag contestatario: cuando los hashtags tienen efectos polí­ticos". Digitos. Revista de comunicación digital, v. 6, pp. 101-118. https://doi.org/10.7203/rd.v1i6.178

Publicado

2022-02-26

Cómo citar

Zarrabeitia-Bilbao, E., Morales-i-Gras, J., Rio-Belver, R. M., & Garechana-Anacabe, G. (2022). Green energy: identifying development trends in society using Twitter data mining to make strategic decisions. Profesional De La información, 31(1). https://doi.org/10.3145/epi.2022.ene.14

Número

Sección

Artí­culos de investigación / Research articles