Can Twitter give insights into international differences in Covid-19 vaccination? Eight countries´ English tweets to 21 March 2021
DOI:
https://doi.org/10.3145/epi.2021.may.11Palabras clave:
Covid-19, Coronavirus, Pandemics, Vaccination, Public health, Twitter, Word association thematic analysis, WATA, Countries, International studyResumen
Vaccination programs may help the world to reduce or eliminate Covid-19. Information about them may help countries to design theirs more effectively, with important benefits for public health. This article investigates whether it is possible to get insights into national vaccination programmes from a quick international comparison of public comments on Twitter. For this, word association thematic analysis (WATA) was applied to English-language vaccine-related tweets from eight countries gathered between 5 December 2020 and 21 March 2021. The method was able to quickly identify multiple international differences. Whilst some were irrelevant, potentially non-trivial differences include differing extents to which non-government scientific experts are important to national vaccination discussions. For example, Ireland seemed to be the only country in which university presidents were widely tweeted about in vaccine discussions. India´s vaccine kindness term #VaccineMaitri was another interesting difference, highlighting the need for international sharing.
Descargas
Citas
Alothali, Eiman; Zaki, Nazar; Mohamed, Elfadil A.; Alashwal, Hany (2018). "Detecting social bots on Twitter: a literature review". In: 2018 International conference on innovations in information technology (IIT), pp. 175-180. Los Alamitos: IEEE Press. https://doi.org/10.1109/INNOVATIONS.2018.8605995
Bagcchi, Sanjeet (2021). "The world´s largest Covid-19 vaccination campaign". The Lancet infectious diseases, v. 21, n. 3, p. 323. https://doi.org/10.1016/S1473-3099(21)00081-5
Bell, Beth P.; Romero, Jose R.; Lee, Grace M. (2020). "Scientific and ethical principles underlying recommendations from the Advisory Committee on Immunization Practices for Covid-19 vaccination implementation". Jama, v. 324, n. 20, pp. 2025-2026. https://doi.org/10.1001/jama.2020.20847
Benjamini, Yoav; Hochberg, Yosef (1995). "Controlling the false discovery rate: a practical and powerful approach to multiple testing". Journal of the Royal Statistical Society: Series B, v. 57, n. 1, pp. 289-300. https://doi.org/10.1111/j.2517-6161.1995.tb02031.x
Blank, Grant; Dutton, William H.; Lefkowitz, Julia (2019). Perceived threats to privacy online: The Internet in Britain, the Oxford Internet Survey, 2019. September 6. https://doi.org/10.2139/ssrn.3522106
Bonnevie, Erika; Gallegos-Jeffrey, Allison; Goldbarg, Jaclyn; Byrd, Brian; Smyser, Joseph (2020). "Quantifying the rise of vaccine opposition on Twitter during the Covid-19 pandemic". Journal of communication in healthcare, v. 14, n. 1, pp. 12-19. https://doi.org/10.1080/17538068.2020.1858222
Braun, Virginia; Clarke, Victoria (2013). Successful qualitative research: A practical guide for beginners. London, UK: Sage. ISBN: 978 1 847875822
Chopra, Harshita; Vashishtha, Aniket; Pal, Ridam; Tyagi, Ananya; Sethi, Tavpritesh (2021)". Mining trends of Covid-19 vaccine beliefs on Twitter with lexical embeddings". arXiv preprint. https://arxiv.org/abs/2104.01131
DeRoo, Sarah S.; Pudalov, Natalie J.; Fu, Linda Y. (2020). "Planning for a Covid-19 vaccination program". Jama, v. 323, n. 24, pp. 2458-2459. https://doi.org/10.1001/jama.2020.8711
Drieger, Pete (2013). "Semantic network analysis as a method for visual text analytics". Procedia-social and behavioral sciences, v. 79, pp. 4-17. https://doi.org/10.1016/j.sbspro.2013.05.053
Engel-Rebitzer, Eden; Camargo-Stokes, Daniel; Buttenheim, Alison; Purtle, Jonathan; Meisel, Zachary F. (2021). "Changes in legislator vaccine-engagement on Twitter before and after the arrival of the Covid-19 pandemic". Human vaccines & immunotherapeutics, pp. 1-5. https://doi.org/10.1080/21645515.2021.1911216
Esquirol, Bernat; Prignano, Luce; Díaz-Guilera, Albert; Cozzo, Emanuele (2020). "Characterizing Twitter users behaviour during the Spanish Covid-19 first wave". arXiv preprint. https://arxiv.org/abs/2012.06550
Funk, Carey; Tyson, Alec (2020). "Intent to get a Covid-19 vaccine rises to 60% as confidence in research and development process increases". Pew Research Center. https://www.pewresearch.org/science/2020/12/03/intent-to-get-a-covid-19-vaccine-rises-to-60-as-confidence-in-research-and-development-process-increases
Gao, Qi; Abel, Fabian; Houben, Geert-Jan; Yu, Yong (2012). "A comparative study of users´ microblogging behavior on Sina Weibo and Twitter". In: International conference on user modeling, adaptation, and personalization, pp. 88-101. Berlin, Heidelberg: Springer. ISBN: 978 3 642 31453 7 https://link.springer.com/book/10.1007/978-3-642-31454-4
Hassan-Smith, Zaki; Hanif, Wasim; Khunti, Kamlesh (2020). "Who should be prioritised for Covid-19 vaccines?". Lancet, v. 396, n. 10264, pp. 1732-1733. https://doi.org/10.1016/s0140-6736(20)32224-8
Kennedy, Graeme (2014). An introduction to corpus linguistics. Oxford, UK: Routledge. ISBN: 978 0 582231542
Luo, Linhao; Zhang, Xiaofeng; Yang, Xiaofei; Yang, Weihuang (2020). "Deepbot: a deep neural network based approach for detecting Twitter bots". Materials science and engineering, v. 719, v. 1, 012063. https://doi.org/10.1088/1757-899X/719/1/012063
Malik, Amyn A.; McFadden, SarahAnn M.; Elharake, Jad; Omer, Saad B. (2020). "Determinants of Covid-19 vaccine acceptance in the US". EClinicalMedicine, v. 26, 100495. https://doi.org/10.1016/j.eclinm.2020.100495
McClung, Nancy; Chamberland, Mary; Kinlaw, Kathy; Matthew, Dayna B.; Wallace, Megan; Bell, Beth P. (2020). "The Advisory Committee on Immunization Practices´ ethical principles for allocating initial supplies of Covid-19 vaccine - United States, 2020". Morbidity and mortality weekly report, v. 69, n. 47, pp. 1782-1786. https://doi.org/10.15585/mmwr.mm6947e3
Neuendorf, Kimberly A. (2015). The content analysis guidebook. Oxford, UK: Sage. ISBN: 978 1 412979474
Nuzhath, Tasmiah; Tasnim, Samia; Sanjwal, Rahul-Kumar; Trisha, Nusrat-Fahmida; Rahman, Mariya; Mahmud, Farabi; Arman, Arif; Chakraborty, Susmita; Hossain, Md Mahbub (2020). Covid-19 vaccination hesitancy, misinformation and conspiracy theories on social media: A content analysis of Twitter data. https://osf.io/preprints/socarxiv/vc9jb
Painter, Elizabeth M.; Ussery, Emily N.; Patel, Anita; Hughes, Michelle M.; Zell, Elizabeth R.; Moulia, Danielle L. (2021). "Demographic characteristics of persons vaccinated during the first month of the Covid-19 vaccination program - United States, December 14, 2020 - January 14, 2021". Morbidity and mortality weekly report, v. 70, n. 5, pp. 174-177. https://doi.org/10.15585/mmwr.mm7005e1
Paul, Elise; Steptoe, Andrew; Fancourt, David (2021). "Attitudes towards vaccines and intention to vaccinate against Covid-19: Implications for public health communications". The Lancet regional health-Europe, v. 1, 100012. https://doi.org/10.1016/j.lanepe.2020.100012
Phelan, Alexandra L. (2020). "Covid-19 immunity passports and vaccination certificates: scientific, equitable, and legal challenges". The lancet, v. 395, n. 10237, pp. 1595-1598. https://doi.org/10.1016/S0140-6736(20)31034-5
Puri, Neha; Coomes, Eric A.; Haghbayan, Hourmazd; Gunaratne, Keith (2020). "Social media and vaccine hesitancy: new updates for the era of Covid-19 and globalized infectious diseases". Human vaccines & immunotherapeutics, v. 16, n. 11, pp. 2586-2593. https://doi.org/10.1080/21645515.2020.1780846
Ramage, Daniel; Rosen, Evan; Chuang, Jason; Manning, Christopher D.; McFarland, Daniel A. (2009). "Topic modeling for the social sciences". In: NIPS 2009 Workshop on applications for topic models: Text and beyond, pp. 27-33.
Sah, Ranjit; Shrestha, Sunil; Mehta, Rachana; Sah, Sohan K.; Raaban, Ali A.; Dharma, Kuldeep; Rodríguez-Morales, Alfonso J. (2021). "AZD1222 (Covishield) vaccination for Covid-19: experiences, challenges and solutions in Nepal". Travel medicine and infectious disease, v. 40, n. 2, 101989. https://doi.org/10.1016/j.tmaid.2021.101989
Thelwall, Mike (2021). Word association thematic analysis: A social media text exploration strategy. San Rafael, CA: Morgan & Claypool. https://doi.org/10.2200/S01071ED1V01Y202012ICR072
Thelwall, Mike; Makita, Meiko; Mas-Bleda, Amalia; Stuart, Emma (2021). ""˜My ADHD Hellbrain´: A Twitter data science perspective on a behavioural disorder". Journal of data and information science, v. 6, n. 1, pp. 13-34. https://doi.org/10.2478/jdis-2021-0007
Wojcik, Stefan; Hughes, Adam (2019). "Sizing up Twitter users". PEW Research Center. https://www.pewresearch.org/internet/2019/04/24/sizing-up-twitter-users
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Condiciones de difusión de los artículos una vez son publicados
Los autores pueden publicitar libremente sus artículos en webs, redes sociales y repositorios
Deberán respetarse sin embargo, las siguientes condiciones:
- Solo deberá hacerse pública la versión editorial. Rogamos que no se publiquen preprints, postprints o pruebas de imprenta.
- Junto con esa copia ha de incluirse una mención específica de la publicación en la que ha aparecido el texto, añadiendo además un enlace clicable a la URL: http://revista.profesionaldelainformacion.com
La revista Profesional de la información ofrece los artículos en acceso abierto con una licencia Creative Commons BY.