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Abstract 

Massive datasets of molecular sequences, medical images, and other structured information pose challenges of their 
utilization and interpretation through traditional data analysis methods. The current study aims to explore how Artificial 
Intelligence procedures like deep learning can improve predictive modeling and pattern recognition in healthcare 
analytics and information processing. This study proposes a two-stage deep learning model that combines long short-
term memory (LSTM), convolutional neural networks (CNNs), and natural language processing (NLP) techniques. This 
combination helps improve the accuracy of predictions The study also proposed the use of "SENIES," the DNA Shape 
Enhanced Two-Layer Deep Learning Predictor, a computational method used to identify enhancer regions within DNA 
sequences. The study used a scientific and exploratory methodology for the identification and characterization of the 
enhancer, utilizing a sample of active enhancers from a cohort of 9,000 cancer patients from a machine learning-
powered database. The data was analyzed through Mathew’s correlation coefficient principle using steps like precision 
recall, specificity, and accuracy. This method is commonly used to evaluate categorization accuracy. The study found 
that when identified enhancers are placed next through AI-based evaluation to assess their characteristics, they can 
decipher their regulatory functions, and determine their relationships to the target genes. It was also concluded that 
the proposed models work well with different dataset sizes, making it flexible for various applications, leading to the 
integration of AI-driven biological data along with the recognition and prioritization of functional non-coding mutations, 
as an efficient method of cancer research.  The study recommends incorporation of some of the additional AI-driven 
methods for better results and accurate predictions.  Future research should focus on integrating predictive models for 
real-time data analysis, which would help improve the development and effectiveness of such models. 
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1. Introduction  
Artificial intelligence (AI) is aiming to transform the healthcare by improving medical decision-making processes, disease 
detection and treatment (Rajpurkar et al., 2022). The given advancement in the field of AI has provided benefits to several 
stakeholders (Deng et al., 2022; Rajpurkar et al., 2022). However, they also create new challenges, and as a results, pushing 
towards the adoption of better  systems and structures  while using the AI on effective grounds (Sun; Medaglia, 2019). 
Unlike earlier available technologies, AI in healthcare requires a lot of new and innovative ways of managing and overseeing 
its usage. This is because AI is constantly learning and becoming more independent in the modern world (Berente et al., 
2021). Simultaneously, AI-based systems are often found full of complexities, making them difficult to understand for many 
people. For example, AI models can change over time due to shifts in their data or real-world conditions, it is quite hard for 
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the decision-makers such as hospital administrators to observe these technological changes. AI is always evolving, therefore, 
healthcare industry needs new strategies to monitor and control its use (Jöhnk et al., 2021). To address such concerns, 
decision-makers must have access to the right information at the right time as linked with the AI domain. One of the key 
points is that information is valuable because it helps people make smart decisions. However, sharing AI-related information 
is often difficult which further determines the information processing layout. This is partly because different experts like 
doctors, data scientists, and administrators have their diversified level of knowledge related to AI. Since AI in healthcare 
involves multiple experts working together, strong coordination is essential for success (Higgins; Madai, 2020). Therefore, 
the way AI is developed and used in healthcare depends on how well information is processed.  

There is ongoing research to explore how artificial intelligence and deep learning domains can improve predictive modeling 
and pattern recognition in healthcare analytics and information processing. Big data in healthcare is growing with a rapid 
speed due to AI-driven approaches. It is leading to the creation of massive datasets that include molecular sequences, medical 
images, and other structured information. However, effective utilization of this data is very challenging by using the artificial 
intelligence and relevant facilities. While traditional data analysis methods demand some sort of the rigorous procedures, the 
idea of deep learning has proven to be highly effective in managing large-scale medical and biological data. The reason is that 
traditional experimental methods for identifying these elements are somehow slow and not effective in terms of cost factor. 
In contrast, AI-based computational methods are faster and more efficient. To tackle these challenges, this study presents a 
two-stage deep learning model that combines long short-term memory (LSTM), convolutional neural networks (CNNs), and 
natural language processing (NLP) techniques. This combination helps improve the accuracy of predictions.  Moreover, the 
model is designed to work well with different dataset sizes, making it flexible for various applications. The study also proposed 
the use of "SENIES" (DNA Shape Enhanced Two-Layer Deep Learning Predictor), a computational method used to identify 
enhancer regions within DNA sequences by leveraging information about the 3D structure and shape of the DNA alongside 
traditional sequence data, allowing for better prediction of both the presence of enhancers and their strength. 

It has also widely been admitted that DL techniques are getting interest from different researchers for processing 
information, especially in the domains like bioinformatics and computational biology. One of the key reasons for their 
ongoing success is their ability to manage and interpret large amounts of biological data. Meanwhile, the neural networks 
help in transforming some raw data into structured information. Therefore, it is making it easier to analyze the available 
data and information processing. This research focuses on enhancing bioinformatics through deep learning (DL) to identify 
and predict important regulatory elements in complex datasets for the purpose of information processing. This study offers 
a quick and accurate DL architecture as a response to the problems listed above. Furthermore, it is imperative to stay 
abreast of the latest advancements in research in order to maintain a leading position in this rapidly evolving field. 

This study is based on the premise that a more efficient method of cancer research would involve the integration of AI-
driven biological data along with the recognition and prioritization of functional non-coding mutations. Within the field 
of AI-driven biomedical research, the examination of cell-specific enhancer activity is a prominent area of study. The 
accomplishments of deep learning (DL) in AI-based biological research have been examined in the parts that follow. In 
the current work, AI-driven computational models were employed to investigate enhancer behavior, uncovering 
multiple unique connections between enhancers and important epigenetic regulatory processes. The objective of the 
ensuing investigation was to comprehensively classify cancer-causing mutations in patients with acute leukemia. A 
significant number of recurrent mutations in diverse epigenetic regulators were effectively identified through deep 
learning-based analysis. Based on the aforementioned studies, it is now possible to assess how AI-powered models can 
analyze somatically acquired mutations within epigenetic regulators, evaluating their impact on gene expression and 
enhancer function during tumor evolution. The findings clarify the crucial role that machine learning-driven 
transcriptional analysis plays in understanding the etiology of cancer-related genetic disorders. 

2. Literature Review  
Due to recent developments in DNA fragmentation technologies, the AI-driven bioinformatics discipline has produced 
large amounts of data. Sequences can be translated through a complex process that uses the sequence to generate 
protein, even though they cannot convey ready-to-use information. The comparison of the produced sequence with 
known cancer-related datasets facilitates the assessment of protein expression and diagnosis of malignancy (Ding et al., 
2010). The gathering of biological data has made it more challenging to construct a cogent explanation of the genetic 
causes of cancer. The difficulties in the treatment and prevention of diseases are also closely related to the wide 
variation in gene expression levels seen in individuals, which includes a variety of characteristics but is only represented 
by a small number of samples. The likelihood of a successful recovery is inversely connected with how quickly the 
disease is recognized (Chen et al., 2021). Features are retrieved in a hierarchical way within the context of a deep 
learning (DL) architecture, encompassing multiple degrees of nonlinearity. 

Single-solution algorithms and population-based algorithms are two main categories under which metaheuristic AI 
algorithms fall. In the course of the optimization process, the single-solution method only considers one potential solution. 
As the process goes on, this solution changes and evolves. On the other hand, the population-based approach deals with 
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the process of optimization by using a randomly selected search agent. Each agent follows a unique strategy to address the 
optimization problem. By sharing information about the search area and actively collaborating, the agents reduce the risk 
of getting stuck in local optima. Moreover, it is further expressed that AI-driven metaheuristic algorithms are widely used 
in decision-making problems. Besides, the idea of exploration involves searching for new potential solutions. The 
application of a unified optimization technique can successfully handle the issue of Feature Selection in AI-based models 
(Brynjolfsson; McAfee, 2014) and the difficulties posed by binary optimization. Researchers have developed a number of 
hybrid methods that combine simulated annealing and the Whale Optimization Algorithm (WOA), such as the Genetic 
Algorithm (GA), Gray Wolf, and Particle Swarm Optimizer (PSO). Additionally, Moslehi and Haeri (2020) have suggested a 
hybrid strategy that combines the filter and wrapper approaches of feature selection (Brynjolfsson; McAfee, 2014). It cannot 
be guaranteed that the FS issue will reveal improved properties. Furthermore, it is impossible to create an optimizer that is 
capable of solving all optimization issues, according to the No Free Lunch (NFL) theorem in AI optimization (Ho; Pepyne, 2002). 

Among the different types of deep learning models, recurrent neural networks (RNNs) and convolutional neural networks 
(CNNs) are showing their outstanding potentials. These models are useful for tasks in the form of data extraction, pattern 
recognition, and in detecting abnormalities. Additionally, the RNNs are particularly good at processing structured data, 
while CNNs focus on identifying patterns in structured datasets. Such qualities are making them effective for feature 
extraction and classification. Moreover, the use of long short-term memory (LSTM) and gated recurrent unit (GRU) based 
models improve the information retention. Similarly, CNNs have also some sort of potential in dealing with the genetic 
information. Additionally, DL models help process and organize information by learning from labeled data. Therefore, they 
are capable enough to classify and predict information, along with generating new data, or remove unnecessary noises in 
the data and information. However, how well a model learns depends on the specific goal. A key concept in AI is knowledge 
transfer, which allows a model trained on one task to be adapted for another similar task with minimal extra training. This 
not only saves time and computing power but also makes artificial intelligence-based models more adaptable. Given the 
large size of algorithmic datasets, efficient model designs and data management strategies are essential (Adadi, 2021). 
Techniques such as model compression, data augmentation, and mini-batching optimize computational efficiency and 
resource utilization. In real-time or high-throughput applications, model inference speed is critical, and hardware acceleration 
using Graphics Processing Units (GPUs) or Tensor Processing Units (TPUs), along with lightweight architectures, can 
significantly enhance processing efficiency. To assess model performance in AI-driven information analysis, relevant metrics 
such as precision, recall, F1-score, or the area under the receiver operating characteristic curve (AUC) should be used. 

Cancer prediction using AI-driven biological data is a major domain in the current times. AI-powered association studies 
have found genetic variants linked to an elevated risk of cancer found outside of the coding DNA sequence. These 
variations are frequently discovered in parts of the DNA where enhancer elements are known to be abundant. 
Furthermore, the advancement of high-throughput methods has made it possible to precisely identify potential enhancer 
elements in both tumor and normal cells. In order to make the identification and manipulation of enhancers easier, a 
variety of AI-driven approaches and analytical techniques have been used in the classification of enhancer activity markers. 
The specific scenarios associated with it limit the study of enhancers in experimental detection. As enhancers may display 
activity in particular physiological circumstances while staying inactive in different cell types or states, this procedure 
necessitates doing numerous trials to find them. Given the significant discrepancies in enhancer predictions produced by 
current AI-based computational methods, it would be advantageous for the scientific community to provide a thorough 
analysis of the methodologies and solutions developed in this field. A specific DNA region is examined utilizing a variety of 
data sources to establish its potential as an enhancer as part of the computational process for discovering enhancers.  

Given the aforementioned justifications, a modern, exact, and quick strategy to treat cancer diseases is still required. In 
cases where the problem is not serious, a rapid and correct diagnosis within a reasonable amount of time is essential. On 
the other hand, in emergency situations, a prompt diagnosis is essential to reducing the risk to a person's life. 
Understanding the AI-driven biological predictions generated by DL algorithms is of paramount importance. Interpretability 
approaches such as saliency maps and attention processes can be employed to unveil the specific segments of a biological 
sequence that exert influence on the predictions. The selection of model architecture and methodologies will depend on 
the particular AI-based biomedical task being undertaken and the available data. The field of predicting and analyzing 
biological sequences with DL is currently undergoing active development in order to enhance efficiency.  

3. Research Methodology  
The study used a scientific and exploratory methodology for the identification and characterization of the enhancer. 
Various AI-driven computational methods interpret DNA segments using feature vectors. A list of anticipated enhancers 
is the main output of the enhancer identification process. In this study, the identified enhancers were placed next 
through AI-based evaluation to assess their characteristics, decipher their regulatory functions, and determine their 
relationships to the target genes. Figure 1 shows that to identify enhancers the initial step for data resources is to 
provide feature vectors that define the dataset. While eRNAs act as feedback to help with the classification of enhancers 
and the evaluation of their properties, enhancer data is used for screening purposes. 
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Figure 1: Enhancer Prediction System. 

Open chromatin areas, histone modification marks, and protein binding sites are just a few of the markers that have 
been proposed with varied degrees of success as enhancer predictors. There is still no agreement on a single enhancer 
identification method that will eventually be used to distinguish and find enhancers within large biological data regions. 
To enhance and facilitate theoretical techniques for the discovery of enhancers, a wide range of AI-driven mathematical 
models were developed. Numerous attempts to determine the role of transcriptional factors in cancer have yielded a 
profound understanding of the mechanisms underlying tumor sustenance and malignant transformation (Bakrania et 
al., 2023). An investigation using the distribution of histone marks and RNA-Seq data from the TCGA database yielded 
a total of 15,808 enhancers. The expression of enhancer RNA was thought to be a sign of enhancer activity. Multiple 
connections between enhancers and oncogenes have been made, and a comparison between somatic copy number 
changes and global enhancer interactions has been conducted. Based on the knowledge that the chromatin state 
significantly affects genetic regulatory patterns, this comparison was made. In terms of sample, this study is the first to 
thoroughly examine the number of active enhancers in a cohort of 9,000 cancer patients with a variety of cancer types. It 
also seeks to create a machine learning-powered database that can be used for future research into the underlying 
mechanisms driving chromatin modifications that aid in the development of cancer. Table 1 provides an in-depth analysis 
of databases used for each tool enhancer with their advantages and limitations.  

Table 1: Sample of the Study. 
Tool for Enhancer 

Prediction 
Database Used Advantages Limitations 

kmer-SVM (Wang et al., 
2023) 

EP300/CREPP scores binding sites true 
positive 

50% of predicted enhancers with SVM score above 
1.0 are 

Sample bias with training data 

gkm-SVM (Velichko et al., 
2023) 

GN12878 from gene expression 
omnibus 

Improvement in classification accuracy for long 
TFBS 

Overfitting curves 

GMFR-CNN (Das; 
Toraman, 2022) 

10 ChIp - SEQ Datasets from deep 
bind 

98% prediction accuracy with high precision (98%) 
& sensitivity (98%) & optimal F measure 

Selection bias during training 

DeepBind (Li et al., 2021) PBM, SELEX ChIp & CLIP seq 
Fully automated good score for in vivo data after 
training from in vitro data 

Poor calibration setting in training 

Basset (Painuli et al., 
2022) 

164 cell types by DNase-seq 
Provides a better view of region with high 
resolution & high prediction accuracy 

High computing cost 

DeepSea (Cheng et al., 
2022) 

Chromatin profiles from ENCODE & 
Road map data 

High prioritisation of eQTL variants, Chromatin effects 
prediction 0.896, & Transfer learning framework 

Unbalanced PR-AUC metric & Lack of 
reoccurring modelling 

DanQ (Sapoval et al., 
2022) 

Chromatin profiles from ENCODE & 
road map data 

Performed better than DeepSEA for 97.6% targets 
Perfect fit of architecture missing & Model is not fully 
recurrent, so it cannot process sequences of all lengths 

TFImpute (Yin et al., 2022) ChIp-seq from ENCODE 
Better area under the curve & recall rate in 
comparison with DeepSEA & gkm-SVM 

No linear dependencies of enhancer on 
transcriptional binding factors. & Best fitting 
not achieved with all enhancer marks 

CSI-ANN (Durge et al., 
2022) 

Hela ENCODE (in terms of delay 
values) 

Performed better than profile-based approach & 
HMM-based chromium, high sensitivity of 84% 

Missing statistical depth as only energy & mean 
are calculated also no non-linear feature used 

RFECS (Lee et al., 2022) 
Human embryonic stem cell 24 
chromatin modification of primary 
lung fibroblast cells 

Best validation rate of 70% & Misclassification of 
less than 7% 

Worked accurately only for specified cell types 
in comparison with CSI-ANN 

REPTILE (Lee; Jang, 2022) 
6 Histone modification marks, epigenetic 
marks & VISTA enhancer browser 

High power of prediction (92%) in case of different 
cell types & better performance than RFECS 

Few negatively stated enhancers exhibit 
enhancer like properties 

EMERGE (Hanczar et al., 
2022) 

ENCODE, ChIp-seq & NARROWPEAK 
Research friendly tool shows the overlap of various 
datasets 

Overlapping sometimes gives misinterpreted 
dataset true negative values 

EnhancerFinder (Tran et 
al., 2023) 

VISTA enhancer database 
Outperformed evolutionary conservation DNA 
motive in terms of ROC with high value 

Prediction are based on single dataset so, the response 
of method to other known enhancer is unpredictable 

Semi-supervised training 
method (Hou et al., 2023) 

VISTA enhancer database, HICAP 
enhancer, & FATOM5 enhancer 

Outperformed simplified semi-controlled learning 
with ROC of 0.84 

Classifier preparation involves a collection of 
known positive & negative observations 

Pan-cancer analysis (Gao 
et al., 2023) 

Tumour samples from 33 types of 
cancer with TCGA RNA-seq dataset 

Complete and accurate system for detection of long 
non-coding RNA & cancerous genes, & This method 
purposed a novel method for enhancer identification 

Different tissues combined due to limited size 
of data results in increased false positives 
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The reliability or authenticity of the enhancers sampled for this study is not assured by the use of computational 
methodologies in enhancer discovery. It is currently difficult to guarantee and confirm the accuracy of identified enhancers 
because there is not a sufficiently broad and empirically tested collection of enhancer data for AI-driven biological analysis. 
In the field of enhancer prediction, a significant barrier is the lack of consistent consensus across many approaches. There 
is a need for thorough AI-powered methodologies that can unquestionably evaluate enhancer activity appropriately. The 
examination of enhancer element mutations’ effects on tumor growth can be facilitated by thorough analysis and clinical 
testing of these mutations. The use of enhancer sequences that have undergone experimental validation has the potential 
to increase the effectiveness of cancer therapy. The dataset utilized in this study is separate from the enhancer data 
available through the VISTA Enhancer Browser, which is vital to mention. A sizable dataset with 43,011 enhancer candidates 
drawn from a wide range of samples was made available by the FANTOM5 group. These samples come from human 
participants and include 241 cell line samples, 432 primary cell samples, and 135 tissue-specific samples. Computationally, 
this hybrid CNN-DLSTM model's pseudocode is shown in the following outline. 

# Import necessary libraries 

import numpy as np 
import tensorflow as tf 

# Define the CNN-DLSTM model architecture 

model = tf.keras.Sequential() 

# Convolutional Layers 

model.add(tf.keras.layers.Conv1D(filters=32, kernel_size=5, activation='relu', input_shape=(sequence_length, 4))) 
model.add(tf.keras.layers.MaxPooling1D(pool_size=2)) 
model.add(tf.keras.layers.Conv1D(filters=64, kernel_size=3, activation='relu')) 
model.add(tf.keras.layers.MaxPooling1D(pool_size=2)) 

# LSTM Layers 

model.add(tf.keras.layers.Bidirectional(tf.keras.layers.LSTM(64, return_sequences=True))) 
model.add(tf.keras.layers.Bidirectional(tf.keras.layers.LSTM(64, return_sequences=True))) 

# Fully Connected Layers 

model.add(tf.keras.layers.Flatten()) 
model.add(tf.keras.layers.Dense(128, activation='relu')) 
model.add(tf.keras.layers.Dropout(0.5)) 
model.add(tf.keras.layers.Dense(1, activation='sigmoid')) 

# Compile the model 

model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy']) 

# Load and preprocess your DNA enhancer data 

X_train, y_train = load_and_preprocess_data(train_data_path) 
X_test, y_test = load_and_preprocess_data(test_data_path) 

Train the model 

model.fit(X_train, y_train, epochs=epochs, batch_size=batch_size, validation_split=0.2) 

Evaluate the model on test data 

loss, accuracy = model.evaluate(X_test, y_test) 
print(f'Test loss: {loss}') 
print(f'Test accuracy: {accuracy}') 

The data was analyzed through Mathew’s correlation coefficient principle using steps like precision recall, specificity, 
and accuracy. This method is commonly used to evaluate categorization accuracy. Binary classification labels “TP” & 
“TN” [“true positive” & “true negative”] and “FP” & “FN” [“false positive” & “false negative”] were generously used for 
measuring categorization accuracy (Perreault Jr et al., 2021). The observed numerical value ranges from negative to 
positive. The system outputs a numerical number from -1 to +1 based on input. We used 5-fold cross-validation to 
evaluate the model due to the dataset’s restrictions and short datasets, which predicts outcomes by averaging five 
forecasts. The area under the curve (AUC), also known as the Receiver Operating Characteristics curve (ROC curve), was 
used to evaluate model performance. A higher AUC indicates model accuracy and quality. In the end, the average of 
five 5-fold cross-validated forecasts was calculated to yield the final prediction. 
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4. Theoretical Framework 
The study proposed a Liver Cancer Prediction Framework. This framework is based on the premise that human DNA dataset 
does not readily reveal the existence of enhancers, which are DNA regions that bind to transcription factors. Within its 
particular AI-analyzed biological region, the enhancer sequence is in charge of boosting the level of transcriptional activity. 
The interaction of the enhancer sequence with cell transcription factors (TFs), which are linked to open chromatin areas, 
results in this increase. Sequence-level factors also have an impact on the enhancer sequence’s efficacy. As they interact 
spatially with other regulatory elements, like promoters, in a three-dimensional environment, enhancers can exist in three 
different states: dormant, prepared, or active. For the recruitment of transcription factors (TFs) to begin the transcription 
of the target gene, the regulatory elements act as a stable framework (Alharbi; Vakanski, 2023). Hence, enhancers play a 
crucial role in the intricate gene expression program that takes place during human development. The intricate coding 
structures, their occurrence in other genetic elements, and the absence of a distinct enhancer sequence code, among 
several other factors, provide challenges for researchers in their endeavor to ascertain enhancer elements inside genes 
(Pradhan et al., 2023). Furthermore, the precise assessment of enhancer functioning and the precise determination of 
enhancer sites throughout the whole human AI-processed DNA dataset is of paramount importance. 

The recommended model’s robustness in this framework is enhanced by the use of data out of two distinct datasets, 
namely VISTA as well as FANTOM5 Enhancer Browser. These two strategies being investigated operates in two distinct 
stages. To capture the relevant attributes, the process of feature representation is conducted at the first stage on attributes 
such as k-mers, one-hot encoding, and shape. The second stage of the process employs hybrid CNN-Deep Long-Short Term 
Memory (CNN-DLSTM) DL model to forecast enhancers and their respective strengths. This forecast is produced based on 
the features emanated from the preceding round. When CNN is combined with LSTM networks, this new hybrid 
architecture called a CNN-DLSTM is created. Models with long short-term memory (LSTM) are optimized for processing 
time series and other forms of sequential data. In contrast, CNNs are frequently used for analyzing data's geographic 
properties. The RNN architecture was modified to create the long short-term memory (LSTM) neural network. RNNs are 
trained by feeding information into the network in a linear fashion until it reaches the output neurons. Calculated mistakes 
are then relayed backward to the network to change its settings. Information loops are included in the hidden levels of this 
particular network architecture. Loops allow information to flow in both directions, enabling the disguised state to collect 
historical data at a specific time step. Therefore, all results are dependent on previous, proven forecasts.  

However, there are some limitations to how successfully RNNs can link beyond a given number of sequential steps. Since 
it explains the gradual loss of knowledge from earlier steps, gradient vanishing serves as the key explanation for the capacity 
of prediction models to capture short-term dependencies over time. As the depth of an RNN with activation functions 
grows, the loss function's gradient tends to approach zero. Long short-term memory neural networks (LSTM-NNs) are 
useful for fostering long-term associations. Since the lengthy Short-Term Memory (LSTM) model incorporates a memory 
unit and gate mechanism, it may efficiently record sequences with lengthy dependencies. Therefore, Long Short-Term 
Memory Neural Networks (LSTM-NNs) may learn from a large number of consecutive steps and selectively store or discard 
information using three gates and cell states. The integration of spatial and temporal components of data might yield 
valuable insights. Ultimately, the model undergoes training utilizing the provided spatial and temporal data. 

Table 2: Tuned Hyperparameters for CNN. 
Model Configuration Output Shape 

Input DNA sample [196,100] 

Convolutional Layer (8x7x1) [196,8] 

Convolutional Layer (16x11x1) [196,16] 

Dropout (rate = 0.5) (1470) 

Dense Layer (1) 1 

Softmax (1) 1 

Table 2 shows tuned hyperparameters for CNN suggesting that local features can be detected by convolutionizing input 
DNA sample with a kernel. Multiple kernels can be merged to make a filter. A CNN has several layers, but the 
convolutional and max-pooling layers are crucial. The convolutional layer uses a weight matrix and feature maps to 
extract and categorize important feature data. Spatial invariance can be achieved by using a maximum pooling layer 
with reduced feature map resolution. The neural network uses multiple fully connected layers after convolutional and 
max-pooling layers to better understand the dataset's non-linear combinations of high-level properties. Following 
DeepBind, this study built a three-layer CNN containing a convolutional layer, a ReLU activation as well as max-pooling 
layers. These last layers infer properties obtained as a result of input. CNN model input is the combination of results 
from different features and their representation-based methodologies. 

The results section discusses in detail the schematic representation of this investigated analysis framework. It is shown that 
datasets utilized in this investigation included experimentally validated human enhancers from a wide array, which were 
obtained from the VISTA Enhancer Browser collection in 1747. The atlas of active enhancers from FANTOM5 was the source 
of the other used in this investigation. The other mentioned methods in this five-step rules for building a reliable benchmark 
dataset were used to select this dataset, which guarantees accurate training and testing of the suggested model.  



Development And Application of Artificial Neural Network and Deep Learning Frameworks for Information Processing 

e330612 Profesional de la información, 2024, v. 33, n. 6. e-ISSN: 1699-2407     7 
 

5. Results and Findings 
The feature representation learning strategy incorporates elements from Word2Vector (W2V), One-Hot Encoding 
(Ezziane, 2006), and AI-driven shape analysis methods. In Table 3, the model is applied to data with varied k-mer lengths 
from 1 to 3 to 5 to 6 mers to discover the optimal k. The optimal k value may then be found. Grid-search revealed that 
the 3-mer structure performs better than all other k values (Khalsan et al., 2022). 

Table 3: Performance of the Suggested Model on Different Values of k-mer on the First and Second Stages.  
Stage k-mer Precision Specificity Recall Accuracy MCC 

First 

1-mer 0.81 0.79 0.89 0.82 0.56 

3-mer 0.85 0.83 0.92 0.84 0.59 

5-mer 0.80 0.78 0.86 0.81 0.54 

8-mer 0.75 0.74 0.81 0.77 0.49 

Second 

1-mer 0.76 0.74 0.82 0.77 0.51 

3-mer 0.83 0.80 0.88 0.81 0.55 

5-mer 0.79 0.75 0.84 0.78 0.53 

8-mer 0.72 0.69 0.76 0.71 0.45 

Five-fold cross-validation tested the model’s 3-mer prediction ability. The dataset was divided into five equal sections, 
with one for testing and four for training. Figure 2 shows boxplots of 5-fold cross-validation findings. The ROC 
investigation reveals that Word2Vector encoding classifies data better than One-Hot Encoding or AI-driven shape 
analysis techniques (Figure 3). The hybrid Convolutional Neural Network (CNN) and Deep Long Short-Term Memory 
(DLSTM) model’s first and second phases provide AUC values of 0.86 and 0.81 (Figure 3). This is achieved by combining 
multiple feature representation techniques from deep learning-based approaches. Therefore, the model that included 
the results of many methods outperformed one that relied just on any one of them. Integrating multiple AI-based 
encoding techniques significantly enhances model performance compared to using a single method. The resulting 
dataset in this study was utilized in the subsequent prediction stage once the IDs have been trained and tested. Utilizing 
an unbalanced dataset, the optimized hybrid CNN-DLSTM model under examination was improved for enhanced 
information extraction and classification accuracy.  

 
(a) 

 
(b) 

Figure 2: Five-cross Validation using 3-mer Data (a) and the Suggested Model's Boxplot (b). 
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(a) 

 
(b) 

Figure 3: ROC Curves for Word2vector, DNA Shape for (a) 1st Stage (b) 2nd Stage, One Hot Encoding and its Combination. 

Taken from the FANTOM5, therefore we assessed the model on a separate balanced dataset to validate its applicability 
in a variety of contexts. The collection includes 1747 sequences with visible enhancer activity that were obtained from 
VISTA. Performance of the hybrid CNN-DLSTM and LSTM-NN techniques on independent datasets is shown in Table 4. 

Table 4: Comparing the Effectiveness of the iEnhancer-2L Technique and the Hybrid CNN-DLSTM on a Test Dataset. 
Stage Method Specificity Accuracy MCC 

First 
iEnhancer-2L [160] 0.80 0.76 0.59 

Hybrid CNN-DLSTM (Proposed Method) 0.83 0.82 0.66 

Second 
iEnhancer-2L [160] 0.75 0.74 0.31 

Hybrid CNN-DLSTM (Proposed Method) 0.80 0.80 0.42 

Table 5: Comparison of Hybrid CNN-DLSTM with Different Machine Learning-based Classifiers. 
Stage Method Specificity Accuracy MCC 

First 

Support Vector Machine 0.83 0.76 0.56 

KNN 0.90 0.75 0.51 

Ensembles for Boosting 0.74 0.73 0.48 

Random Forest 0.77 0.74 0.49 

Hybrid CNN-DLSTM (Proposed Method) 0.87 0.90 0.70 

Second 

Support Vector Machine 0.64 0.67 0.35 

KNN 0.63 0.67 0.31 

Ensembles for Boosting 0.60 0.64 0.30 

Random Forest 0.58 0.62 0.25 

In order to examine alternative classifiers, classification methods like k-nearest neighbor (KNN), random forest, support 
vector machine (SVM), and ensembles for boosting are generally used in computational biology. These techniques are 
well-known for working and are frequently used in the industry. We investigated our model using several machine 
learning based classification techniques (Ahmed et al., 2016) to judge the efficiency of the suggested hybrid CNN-
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DLSTM technique in recognizing enhancers as well as its strengths. The K-Nearest Neighbours (KNN) algorithm's 
efficiency depends on choosing the number of closest neighbors, whereas the Random Forest algorithm's success 
depends on the number of trees. We have chosen the ideal settings for each method so that we may compare them. 
Table 5 compares the performance of our model compared to other classifiers concerning accuracy, specificity, as well 
as Matthews correlation coefficient (Perreault Jr et al., 2021), illustrating its superiority. However, a hybrid CNN-LSTM 
model is thought to be preferable to using an LSTM unit alone. Our method also has the advantage of feeding information 
into the DL model by combining three feature representation strategies, that of specificity, accuracy, and MCC, as shown in 
Table 6 along with their values, though similar to other methods as seen in Table 5  

Table 6 Hybrid CNN-DLSTM (Proposed Method). 
Stage Specificity Accuracy MCC 

 0.80 0.80 0.42 

 
(a) 

 
(b) 

Figure 4. Plots showing accuracy for the proposed model's (a) first and (b) second stages, respectively 

Figure 4 displays accuracy plots for the proposed model's first and second stages, respectively. When compared to 
SENIES, the suggested model behaves better in the first and second stages when it comes to precision, sensitivity, and 
MCC, respectively, according to the recommended model. The hybrid CNN-DLSTM model possesses inherent 
advantages in effectively and comprehensively capturing and learning the underlying properties. Potential future paths 
of this research encompass the development of an open-source web server to facilitate the utilization of the proposed 
hybrid CNN-DLSTM model. This endeavor has promise to enhance computational biology capabilities within the field of 
medical science. 

6. Discussion 
The study developed a DL-based system to facilitate the extraction of features utilizing three unique feature 
representation methodologies, namely CNN and DLSTM as shown in Figure 5. Additionally, this system enables the 
prediction of enhancers and their potency. The proposed method uses information garnered both from FANTOM5 along 
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the VISTA enhancer browser, which results in a more accurate categorization of enhancer components. By employing 
a word embedding model for expressing characteristics and successfully implementing a single-dimensional CNN 
towards the most advanced stage of classification, researchers have conducted more studies into the possible 
outcomes of the suggested technique. Our method finds its primary use in the fields of medicine, pharmaceutical 
research, and computational biology. This is due to the essential role enhancers play as cis-regulatory elements in the 
regulation of several genes. 

 
Figure 5: DL-based CNN-GRU model utilized using CNN-DLSTM. 

 
(a) 

 
(b) 

Figure 6: Accuracy Plots for (a) First Stage of GRU based Model (c) Second Stage of GRU based Model. 

Figure 6 shows an improvement to the training strategy. The present DL approach was facing an issue of over-fitting 
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due to the restricted amount of enhancer samples in a particular cell. The benchmark dataset was created using the 
method described in this article, which makes substantial use of FANTOM5 and VISTA enhancer browser data. After 
that, the model was trained using the proper hyper-parameters. Evidence of the model's advantage over conventional 
training techniques comes from the evaluation of the model on an independent dataset. The combination of CNNs and 
Deep Long Short-Term Memory (DLSTM) networks is a recent development in the field of architecture. Table 6 shows 
the evidence that that DLSTM, a kind of recurrent neural network, improves the model's performance by successfully 
capturing long-range sequence interactions.  

Table 6: Comparison of Hybrid CNN-DLSTM with LSTM based Model for Enhancer Identification. 
Stage Method Specificity Accuracy MCC 

First 
iEnhancer-EBLSTM [225] 0.80 0.76 0.533 

Hybrid CNN-DLSTM (Proposed Method) 0.89 0.90 0.70 

Second 
iEnhancer-EBLSTM [225] 0.54 0.66 0.31 

Hybrid CNN-DLSTM (Proposed Method) 0.80 0.82 0.42 

Table 7 and Table 8 compare Hybrid CNN-DLSTM with SENIES for first and second stages, suggesting that latter can be 
utilized as a proposed computational method to identify enhancer regions within DNA sequences by leveraging 
information about the 3D structure of the DNA, replacing the traditional sequence data, in order to achieve better 
prediction of both the presence of enhancers and their strength. 

Table 7: Comparison of Hybrid CNN-DLSTM with SENIES for First Stage. 
Method Feature Representation AUC Accuracy MCC 

SENIES [212] 

One hot encoding (Ezziane, 2006) 0.80 73.71 0.48 

k-mer 0.82 75.81 0.52 

DNAshape 0.81 73.56 0.48 

All 0.82 76.81 0.54 

Hybrid One hot encoding (Ezziane, 2006) 0.72 75.69 0.51 

CNN-DLSTM 

k-mer 0.83 87.49 0.67 

DNAshape 0.82 81.57 0.58 

All 0.85 89.71 0.695 

Table 8: Comparison of Hybrid CNN-DLSTM with SENIES for second stage. 
Method Feature Representation AUC Accuracy MCC 

SENIES 
One hot encoding 0.64 57.96 0.164 

k-mer 0.67 62.51 0.254 

Hybrid DNAshape 0.68 62.04 0.244 

CNN-DLSTM 

All 0.74 68.24 0.381 

One hot encoding 0.60 63.48 0.306 

k-mer 0.81 79.11 0.411 

DNAshape 0.76 76.37 0.398 

All 0.82 81.41 0.42 

For the purpose of liver cancer detection, algorithmic data analysis was used for the initial identification of predictive 
elements, and it was then used to validate the predictions and make the research more easily applicable. Our research 
efforts focused on the study of cancer, with special attention to the field of AI-driven radiology and medical imaging. In 
the developing subject of AI-powered radiology models, cancer-related predictive data and imaging data are combined 
to improve forecast accuracy and precision Based on the importance of exploration in localization and the degree of 
illness propagation, this work presents an algorithmic approach for classifying the slices into six different groups. The 
procedure of practicing a deep neural network (DNN) model utilizing a dataset made up of CT scans of liver cancer 
achieves the aforementioned goal. 

The TCIA dataset, which includes volume images (140 CT) of patients with probable liver cancer, was used in this 
investigation. A total of 140 images makes up the collection, with 131 of them being computed tomography (CT) images 
and the remaining 9 being positron emission tomography-computed tomography (PET-CT) scans. Anatomical structures 
such as the lung, bone, liver, kidney, bladder, and brain have been labeled on the matching segmentation images that go 
along with these images. Additionally, there is a lot of variation in the dataset because it was collected from different CT 
machines and AI-based imaging facilities. The development of a reliable model for learning purposes is significantly 
hampered by this variability. The dataset is made up of volumetric images with various abdominal and whole-body slices. 
Patients without at least a single exam of an organ containing a lesion, benign or malignant, were excluded from the dataset. 

The NIFTI-1-compliant 32-bit floating-point data was used to create the pictures in this collection (See Figure 7 and 
Figure 8). To analyze CT scans in the NIFTI-1 format, radiologists all over the world frequently use DICOM software. Each 
gantry rotation produces several slices that make up a computed tomography (CT) volume. The radiologist's expertise 
and amount of training will determine how well they can extract useful information from a group of slices. The 
computerized tomography (CT) imager generates several types of aberrations and noise that enter CT photos 
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throughout the image gathering process, reducing the effectiveness of a particular ML model (Lee; Jang, 2022). Before 
training the network, pre-processing methods like histogram equalization and Gaussian filtering were used on the 
volume picture data to reduce the influence of these errors. The dataset was acquired using different CT scanner 
settings, resulting in volume images with different contrast levels. On the volume data (Tran et al., 2023), histogram 
equalization was used to change the contrast. 

In this investigation, the original image's 512x512 pixels were downsized to 32x32 pixels before being used in the DL 
model. CNN models can be evaluated for performance using a preprocessing method that involves scaling the initial 
image toward the neural network. The ability to slice and segment photos more efficiently computationally thanks to 
the retention of image contents despite scaling. A volume slice as well as its segmented picture are depicted together 
in Figure 7 to Figure 9. The liver, kidney, and bone are the organs that are visible in these particular scans. The bladder, 
lung, and brain are invisible inside the scan, though patients with liver cancer are subjected to full-body and abdominal 
imaging. While imaging the liver and other organs that may be vulnerable to the development of tumors is the primary 
goal of using a CT scanner, it is important to keep in mind that abdominal and whole-body scans also include imaging of 
several other organs, including the lung, bladder, kidney, bone, and brain. Although liver cancer has the potential to 
migrate to the lungs and then to the bones, the risk of it doing so is quite low. Consequently, a performance examination 
of the liver, lung, and bone has all been done. 

 
(a)                                                                           (b) 

 
(c)                                                         (d) 

Figure 7: Volume Slices of (a) Original (b) Histogram Equalized. (c) Gaussian filtered (d) Data augmented. 

It is not required for radiologists to give each of the 63,503 volume slices the same amount of attention. Figure 7(a) 
shows a cross-sectional view of the liver tissue, whereas Figure 7(c) depicts a cross-section showing organs devoid of 
the liver. Slices of Figures 7(a) and 7(c), respectively, are shown in multi-color histograms with bars of various colors in 
Figures 7(b) and 7(d). The organ colors from the relevant segmented pictures were used to color the horizontal lines 
within the histogram for consistency and clarity. The histogram shown in Figure 8 reveals the (a) Original (b) Segmented 
proportions of various organs distributed over the dataset's 63503 volume images. It demonstrates that the liver is 
visible in about 30% of the dataset's slices, while other organs are shown in 70% of the images.  

 
(a)                                                                          (b) 

Figure 8: (a) Original (b) Segmented. 
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Slice sorting procedure significance is indicated by the ratio of slices with liver to those without liver. This reduces the 
amount of time needed for the radiation oncologist to diagnose liver cancer and for radiation therapy. The colors in the 
segmented slice pictures of Figures 8(a) and 8 (b) are coherent with the colors in the bars in Figure 9 (b) and Figure 9 (d) 
once more. 

 
(a)                                                                           (b) 

 
(c)                                                         (d) 

Figure 9: (a) Slice with Liver (b) Slice Histogram (c) Slice without Liver (d) Slice Histogram. 

Figure 9 confirm the resilience of the proposed model in categorising the test image, the accuracy is determined for 
both training and validation dataset of original volume image, histogram equalized volume image, filtered image and 
data augmented image. 

 
(a)                                                          (b) 

 
(c)                                                         (d) 

Figure 10: Comparison of Model Accuracy on (a) Original volume Slices (b) Histogram Equalized Volume Slices (c) Gaussian Filtered 
Slices (d) Volume Slices with Data Augmentation. 
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Figure 10 depicts receiver operating characteristics (ROC), which can be readily observed in Figure 10(d), having optimal 
cut-off resulting into maximum rate of True Positives with lowest False Positives. The classification results in terms of 
accuracy, precision, sensitivity, specificity, true positive rate, false-negative rate, and F1 score have been computed 
using confusion matrix for each category of volume slice. For the localization of liver cancer and its spread to other 
sections of the body, the organs which are predominantly impacted are liver, lung and bone. Therefore, the confusion 
matrix is computed for the existence of three organs viz. liver, lung, and bone. 

Table 9: Experimentally Derived Validation Accuracy and Model Loss. 

Metrics 
Volume Slices of Original 

Image 
Volume Slices of Histogram 

Equalized Image 
Volume Slices of Filtered 

Image 
Data Augmented Volume 

Slices 

Accuracy 0.99 0.99 0.99 0.99 

Loss 0.04 0.04 0.04 0.02 

The computed metrics are provided in Table 9 for the original volume slices, histogram-equalized volume slices, filtered 
volume slices, and data supplemented volume slices, respectively. For each category of volume segment, the values of true 
positives (TP), true negatives (TN), false positives (FP), and false negatives (AlAfnan; MohdZuki, 2024) were calculated. 
Utilizing TP, TN, FP, and FN, the metrics of precision, recall, specificity, sensitivity, accuracy, and F1 measure are assessed. 

Table 10: Metrics for Various Values of Variance Over Data Augmented Volume Slices. 
Metric Variance = 5 Variance = 10 Variance = 15 

 Liver Lung Bone 

True Positive 175 82 341 

True Negative 485 617 272 

False Positive 15 19 10 

False Negative 55 12 17 

Precision 0.93 0.82 0.89 

Recall (Sensitivity) 0.75 0.89 0.95 

Specificity 0.03 0.16 0.026 

Accuracy 0.91 0.90 0.92 

F-measure 0.84 0.85 0.91 

Table 10 demonstrates metrics for various values of variance over data augmented volume slices. 

While the model is trained using the additional volume slices from the collected  information, the results show a much 
higher validation performance of 99.1% contrasted to the efficiency of 98.7% achieved while training using the original  
volume slices. Data augmented volume slice dataset has a test accuracy of 93.1%  overall, which is higher than other 
volume slices. 

7. Conclusion 
To solve the problem of identifying patterns in AI-driven data processing, researchers have turned to deep learning (DL) 
techniques. Various AI-based repositories and algorithmic pattern detection systems provide datasets used by these 
techniques. As a result of the high degree of dependency between algorithmic sequences, CNN has proven to be 
inadequate as a predictor of complex patterns. The use of DL-based frameworks with CNN and deep long short-term 
memory (DLSTM) outperformed state-of-the-art approaches on a variety of evaluation metrics. These metrics included 
precision, recall, specificity, accuracy, and Matthew’s correlation coefficient. Moreover, the significance of the given 
metrics is clearer when they are compared against each other to evaluate performance outlook. Therefore, it is 
recommended that the incorporation of some of the additional AI-driven methods will provide better results with more 
accurate predictions.  Future research should focus on integrating predictive models for real-time data analysis, which 
would help improve the development and effectiveness of such models. Radiation oncologists can more precisely target 
tumors by using an AI-based automated system to classify 3D CT scans of the liver that show signs of malignancy. The 
use of this technology aids radiologists in making correct diagnoses. Recent advancements in AI and machine learning 
make both of these uses possible.  

However, the classification's effectiveness in lowering the rate of false negatives will depend on how well it functions 
in actual use. This paper presents a model-based, automated method for classifying multiple organs in liver cancer CT 
imaging. This method gives the model the ability to identify which parts of the data are useful and which aren't. 
Oncologists' ability to zero in on a specific subset of a large dataset improves when only a portion of that dataset is 
presented to them. That makes it possible for people to quickly and easily move between many different areas. The 
network is trained using multi-data that includes liver cancer-related CT scans taken in three dimensions. Multiple AI-
driven CT scanners were used to collect the pictures, each with its own unique medical parameters and machine-specific 
configurations. The effectiveness of the proposed method is put through its paces with a variety of test images. The 
results of a performed study using a wide range of different datasets have shown that the proposed method has 
significant advantages for drastically cutting down on false negatives, lowering the rate of unnecessary medical 
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interventions, and saving time, effort, and money. In some cases, it might also prevent unnecessary biopsies from being 
performed. The results of this study are anticipated to aid radiologists and oncologists in the early diagnosis and 
treatment of liver cancer. 

7.1. Future Scope and Implications 

Potential future paths of this research encompass the development of an open-source web server to facilitate the 
utilization of the proposed hybrid CNN-DLSTM model. This method has promise for enhancing AI-driven computational 
analysis capabilities in information processing and predictive modeling. By using a real-time AI-assisted adaptive system, 
it is possible to modify the proposed model to take dynamic variations into account and reduce errors in automated 
decision-making. Principal Component Analysis (PCA) has the potential to be employed to strengthen the strategy on 
the supplied data by optimizing feature selection and dimensionality reduction. The dataset used here is also somewhat 
small; in the future, the model will continue to be trained and tested on larger AI-driven datasets specific to various 
predictive tasks. However, there is much potential for future research to identify pattern propagation across different 
data categories, as the present investigation just examines specific classification cases. Because certain data structures 
tend to be sparse, the proposed technique faces challenges in accurately classifying them. The neural network's 
classification results can be improved by adding more convolutional layers and refining hyperparameter tuning for better 
feature extraction. Additionally, this research is currently limited to specific types of input data, while it can be easily 
extended to multi-modal AI models for broader classification applications. Recognizing the practical significance and 
impact of AI-learned features is one way this research can be expanded further, providing valuable insights into 
automated data analysis and deep learning applications. 
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